20.04.2016

Standing Committee on Concrete Technology

Annual Concrete Seminar 2016 "Green Concrete"

Green Technologies of Concrete Concrete without OPC

Research on Materials Innovation

Ir Raymond Wan

MEng, CEng, MICE, MIM, MICT, FHKCI, FHKIE, RPE, BEAM Pro

配置港 我鍾意 I Love Hong Kong I Love GREEN Technical Director
OPTIMIX Group Limited

Outline

- Demand on Green Construction
- Green Targets & Green Construction Products
- Carbon Footprint of Ordinary Portland Cement
- Green Concretes without OPC
- Standardisation and Guidelines
- Potential Applications of OPC-Free Binder
- Remarks & Ongoing Works

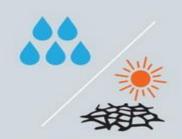
Demand on Green Construction

- Global challenge of limited energy resources
- Environmental challenge of climatic changes
- Reduce energy consumption
- Reduce greenhouse gas emissions
- Better living conditions / environment
- Low embodied carbon raw materials
- Materials with less harmful chemicals
- Highly effective and more durable products
- Lower operation cost and simple maintenance





Hong Kong's Climate on the 21st Century


More very hot days and hot nights

Fewer rain days but average rainfall intensity will increase

More extreme rainfall events

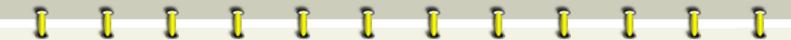
More extremely wet years but risk of extremely dry years will remain

Global sea level rise will lead to coastal changes all over the world, including Hong Kong

Threat of storm surges associated with tropical cyclones will rise

Hong Kong Target on Carbon Reduction

Environment Bureau, HKSAR Government


Global Warming Greenhouse Gas

Hong Kong's Climate Change Strategy and Action Agenda

Target to reduce carbon intensity by 50-60% by 2020 when compared with 2005

Hong Kong Progress on Carbon Reduction

In 2012, the carbon intensity dropped by 19% using 2005 as the base

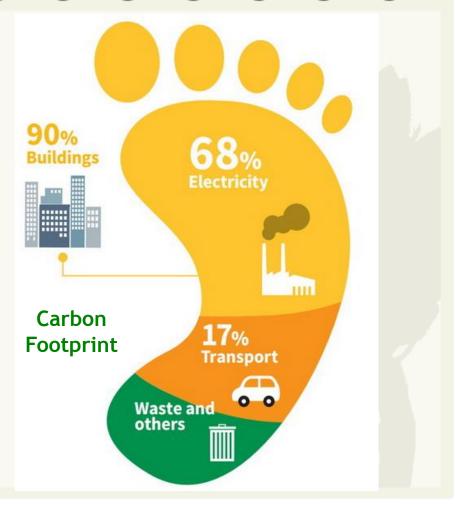
By 2020 → ??%

Year **2020**

Sources of Greenhouse Gas (GHG) Emissions

Hong Kong

Main Source (~60%)


Buildings

Reduce Energy Consumption

Reduce Embodied Carbon

Adopt Greener Construction Practice

BEAM Plus Ver. 1.2 & 2.0

Sustainable Building Design

Sustainable Building Design Guidelines

BEAM Plus

New Buildings

Version 1.2 (2012.07)

BEAM Plus Existing Buildings

Version 2.0

Building Environmental Assessment Method

Voluntary Green Building Certification Scheme

BEAM Plus - Assessment Categories

New Buildings - Version 1.2

6 Major Categories:

Site Aspects (Sa)

Design

Materials Aspects (Ma)

Construct

Energy Use (Eu)

Water Use (Wu)

Operation

Indoor Environmental Quality (leq)

Innovations and Additions (la)

Green Product Labelling Schemes in Hong Kong

HKGBC Green Building Product Labelling Scheme

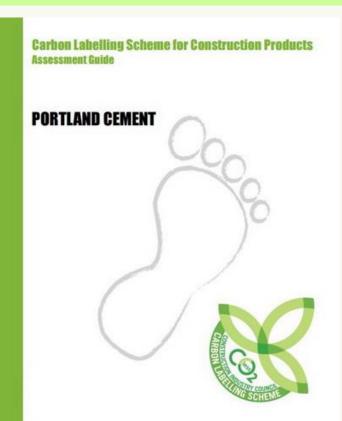
CIC Carbon Labelling Scheme

Outstanding

Very Good

Good

Fair


Improvement Needed

Green Product Labelling Schemes in Hong Kong

CIC Carbon Labelling Scheme Construction Products

Green Product Labelling Schemes in Hong Kong

CIC Carbon Labelling Scheme

Construction Products

Carbon Labelling Scheme for Construction Products Assessment Guide PORTLAND CEMENT

An Overview of Concrete Today

The most used construction material in the world:

- ***Versatile can be poured into moulds and formwork**
- #High compressive strength
- #High thermal mass
- Well established supply chain and infrastructure
- Ready-mix and precast components

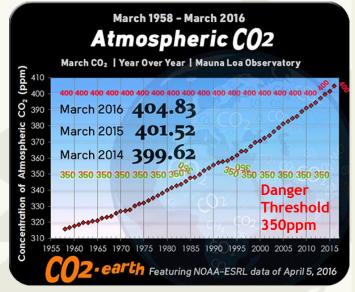
Problems associated with OPC-based concrete:

- ***CO₂ Legacy High embodied carbon**
- ***Limited durability Low resistance to acids, chlorides**
- #High water demand
- #High heat of hydration
- Prescriptive based specification

Concrete Usage in Hong Kong

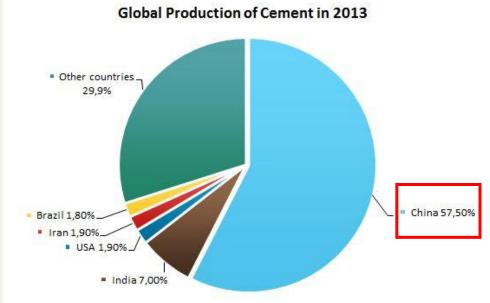
Annual consumption per person is ~5 times of the world average

Carbon Footprint of Cement (1Ton = ~ 0.9 Ton CO₂)

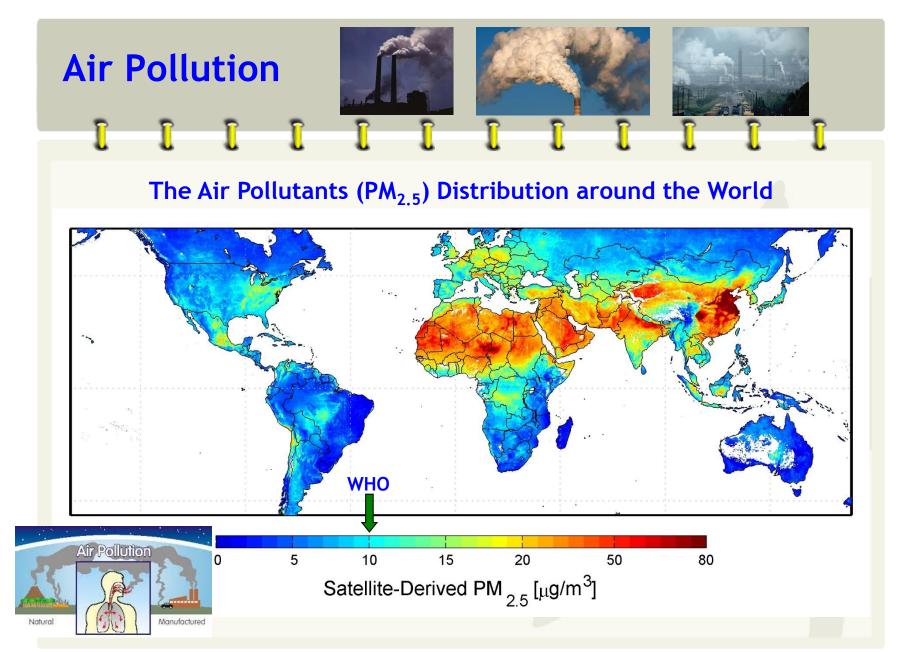

■ The cement industry creating 5-8% of worldwide greenhouse

gas CO₂ emission

Third man-made producer of CO₂
 after transport and energy
 generation

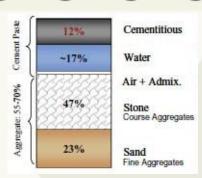

Around one third of the CO₂ was produced in China

Cement Production in the World



■ Can we reduce the cement usage?

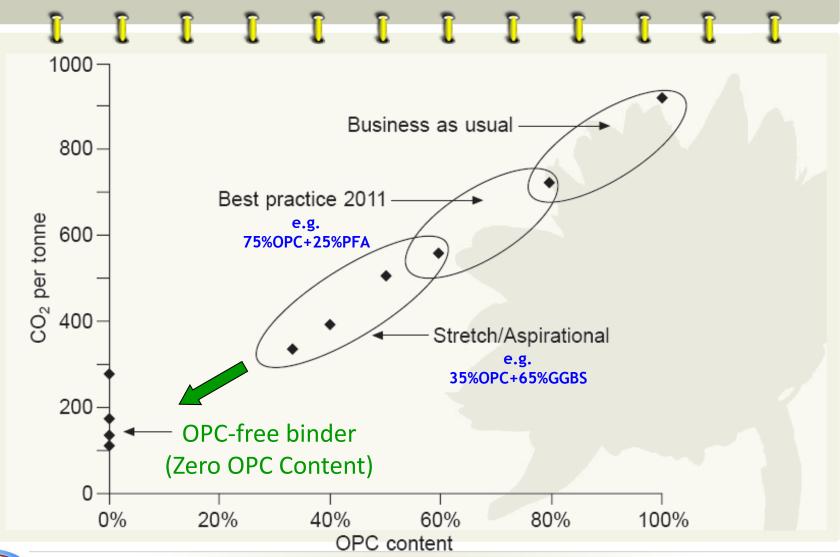

Rank	Country/Region	mil Tonnes	
1	People's Republic of China	2,480	
2	Tudia India	280	
3	United States	77.8	
4	== Iran	75	
5	Indonesia	71	
6	⊗ Brazil	70	
7	Turkey	70	
8	Russia	65	
9	₩ Viet Nam	65	
10	Japan	53	
11	Saudi Arabia	50	
12	South Korea	49	
13	Egypt	46	
14	I ■ Mexico	36	
16	Thailand	35	
17	Germany	34	
18	© Pakistan	32	
19	Italy	29	
20	Algeria	21	
	Others	597	
	2013 World Production	4000	


Air Quality Index (AQI) in the Region

Green Concrete Technologies

- Highly optimized mix design
- Re-cycle / lightweight aggregates
- PFA
- GGBS
- Silica Fume
- Cement Replacement Materials

 Pozzolanic

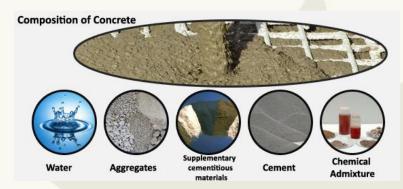

- Self-compacting concrete
- Effective use of admixtures
- OPC-free concrete

Green Concrete with Low Carbon Footprint

OPC-free Binders for Green Concrete

Low Energy, Low Carbon Cementing Materials

Alkali-activated materials (AAM)



- Low energy CSA-belite cements
- Cements based on magnesium oxide derived from carbonates or from silicates
- Eco cements based on municipal solid waste incinerator ash (MSWIA)
- Thermoplastic carbon-based cements

Binder Systems for Concretes and Mortars

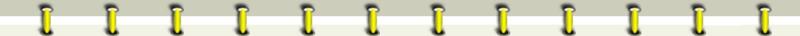
- Ordinary Portland Cement (OPC) Hyrdation Calcium Silicates
 - * OPC
 - **♦ OPC + PFA** 25% PFA
 - ❖ OPC + GGBS 65% GGBS
 - ♦ OPC + PFA + SF
 - ♦ OPC + GGBS + SF

- Alkali Activated Materials (AAM)
 - Alkali + PFA 90% PFA
 - Alkali + GGBS 95% GGBS
 - Alkali + Metakaolin
 - Alkali + PFA + GGBS
 - Alkali + GGBS + Metakaolin

Crystallisation – Alumino Silicates

Alkali Activator (Li, Na, K, Rb, Cs)

Silicate, hydroxide, carbonate, sulfate


For Example

Na₂SiO₃, NaOH, Na₂SO₄

Na₂CO₃, KOH, NaHCO₃

Advantages of AAM over OPC

- * Abundant raw materials resources (waste / by-products)
- Energy saving and environment protection
- Good volume stability
- Reasonable strength gain in early age
- Ultra-excellent durability
- # High fire resistance and low thermal conductivity
- * Ability to immobilize toxic and hazardous wastes
- Superior resistance to chemical attack

AAM Structural Use in Queensland

Suspended floors built from AAM precast slabs

AAM Structural Use in Melbourne

Library built with AAM precast walls

AAM Structural Use in Brisbane

Airport pavement built with in-situ AAM concrete

AAM Structural Use in Russia

24-storey building from insitu and precast AAM concrete

AAM Structural Use in China

6-storey building

Beam & Columns of workshop

Built with AAM (slag concrete)

AAM Recent Usage in United Kingdom

Precast Stair

Insitu
Wall
(No Joint)
34m Long

Insitu Floor (No Joint) 1000m²

Insitu Mass Pour

AAM Precast Elements and Components

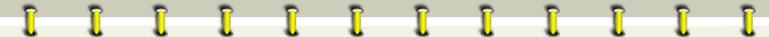
Precast Pipes

Precast Walls

AAM Restoration of Cultural Heritage

Conservation of terracotta sculptures in Czech Republic

AAM Maintenance of Highways Structures


High Early Strength

Rapid Repair for Carriageway and Road

AAM Maintenance of Sewerage System

High Chemical Resistance

Renovation of Sewerage Lining

Concrete Specifications in Hong Kong

Limitations on usage of Cementitious Materials in Concrete Mixes

Concrete Mixes	ASD (2012 Version)	CEDD (2013 Version)	HKHA (2012 Version)	MTRC (2009 Version)
PFA	<35%	<35%	25-35%	25-35%
GGBS	<40%	35-75%	N.A.	36-75%
CSF	<10%	N.A.	N.A.	5-10%
Min. Cementitious (for Water Retaining)	>325kg/m ³	>325kg/m ³	>325kg/m ³	N.A.
Max. Cementitious (for Water Retaining)	<450kg/m ³	<450kg/m ³	N.A.	N.A.
Min. Cementitious (for Grade 40/20)	>300kg/m ³	>350kg/m ³	>350kg/m ³	>350kg/m ³
Maximum Cementitious Content	<550kg/m ³	N.A.	<550kg/m ³	<450kg/m³ (Cat A) <550kg/m³ (Cat B & C)

Constraints to the Mix Proportions

Not Ready For AAM Concrete

Standardisation & Guidelines for Concrete

There is a move towards performance-based standards for industry in Europe, USA, etc.

- > Russian & Czech Republic (over 60 standards)
- ➤ USA : ASTM C1157
- Canada: CSA A3004-E1
- > Australia : AS 3972
- Switzerland: SIA 2049
- > European Union: EN 206
- > Rilem: TC 224-AAM
- > United Kingdom: BSI PAS 8820:2016

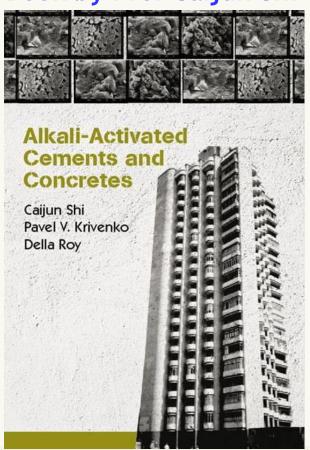
Standardisation & Guidelines for AAM

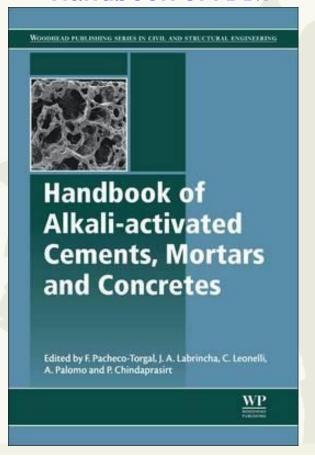
Performance-Based Standard

BS EN 206:2013

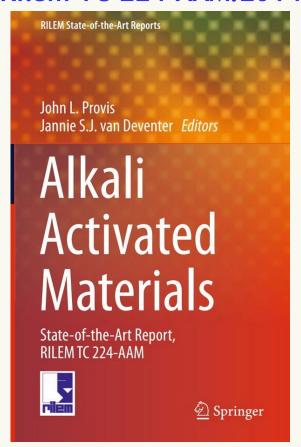
Incorporating corrigendum May 2014

BSI Standards Publication


Concrete — Specification, performance, production and conformity


Standardisation & Guidelines for AAM

Book by Prof Caijun Shi


Handbook of AAM

Standardisation & Guidelines for AAM

Rilem TC 224-AAM: 2014

BSI: PAS 8820:2016

PAS 8820:2016

PUBLICLY AVAILABLE SPECIFICATION Construction materials -


Alkali-activated cementitious material and concrete - Specification

PUBLICLY AVAILABLE SPECIFICATION

Publishing and copyright information

The BSI copyright notice displayed in this document indicates when the document was last issued.

© The British Standards Institution 2016

Potential Applications of AAM

UK BSI: Draft PAS 8820:2016

Draft PAS 8820:2016, 2015-06-09

Table A.1. Potential applications of AACM concretes

Classification	Application
Ready mix	Foundations
	Pathways
	Retaining walls
	Pavements
Precast	Pipes
	Manhole covers
	Structural or semi-structural elements
	Tunnel lining segments
	Insulating panels
	Tiles
	Paving slabs
	Railway sleepers
On-site application	Repair/patch material
	Sprayed concrete

BSI: PAS 8820:2016 - Specification for AAM

PAS 8820:2016

PUBLICLY AVAILABLE SPECIFICATION Construction materials –

Alkali-activated cementitious material and concrete – Specification

- Mechanical & Physical Requirements
- Heat of Reaction
- Admixtures
- Aggregates
- Mixing, Placing & Curing
- Tests for Fresh & Hardened Properties
- Durability Tests ASR, Freezethaw, Sulfate Resistance, Carbonation, Chloride Ingress

PAS 8820:2016

PUBLICLY AVAILABLE SPECIFICATION

Publishing and copyright information

The BSI copyright notice displayed in this document indicates when the document was last issued

© The British Standards Institution 2016 Published by BSI Standards Limited 2016

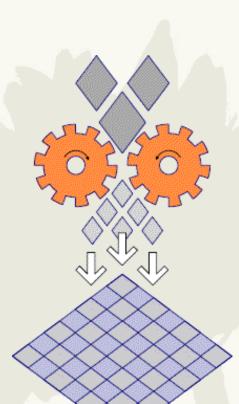
Alkali-silica Reaction of AAM

UK BSI: PAS 8820:2016

Avoidance of alkali-silica reaction

The consensus in the academic literature regarding alkali-silica reaction in AACM mortars and concretes is that the alkaline component of the cement reacts with siliceous aggregates, but that the reaction does not seem to be deleterious or significantly expansive. The fact that the reaction is taking place is evident through the formation of rims of reaction products around the aggregate grains, which can be observed by scanning electron microscopy. However, the degree of expansion observed in specimens exposed to standard testing regimes is uniformly observed to be low; much less than would be expected from simple consideration of the alkali content and aggregate reactivity. The reason for this has been identified as being linked with the binder chemistry, and specifically the high content of reactive alumina present in most AACM formulations. As the alkaline pore solution etches the aggregate particles in an AACM, rather than forming the highly expansive and damaging gel products, which are observed in materials based on Portland cement, the reaction product is instead a non-expansive, cross-linked aluminosilicate gel. This gel resembles the key binding phase in low-calcium AACMs, and thus contributes to the strong binding of the aggregate particles into the AACM rather than introducing any deleterious effects.

Rilem TC 224-AAM: 2014 - Chapter 8 Section 8.3



Enhanced Properties of AAM over OPC-based

- Environmental friendly binder
- Rapid and controllable strength gain
- Resistance to acid & chemical attack
- Resistance to high temperature
- Good volumetric stability
- Low susceptibility to degradation by ASR
- Low permeability

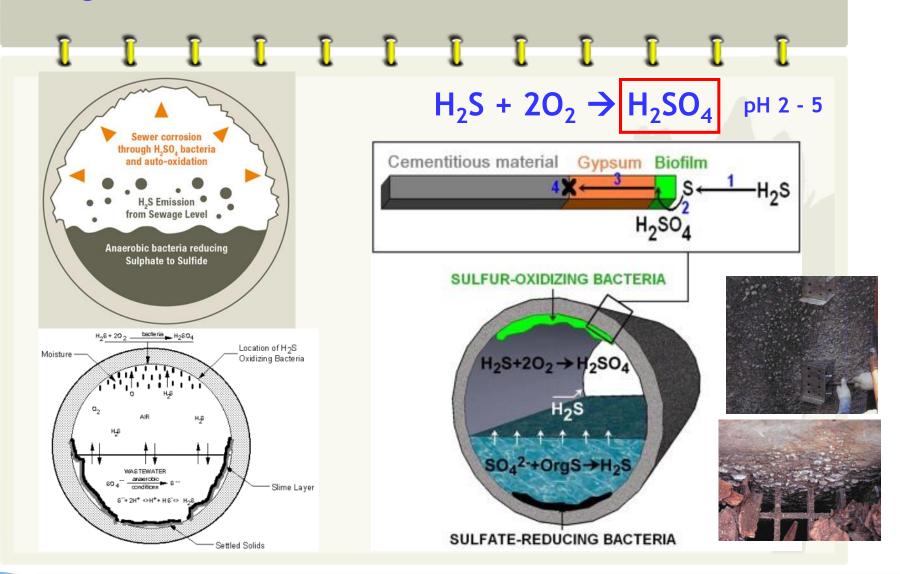
AAM Concrete or Surface Treatment

Protection Against Chemical Attacks

Acid Resistance for Concrete Structures

Use of Materials

Chemical Resistance to Sewerage Components


Sewage / Drainage

- > Manhole
- > Sewage Pipe
- > Culvert
- > Sewage Tank
- Pumping Station
- > Treatment Work

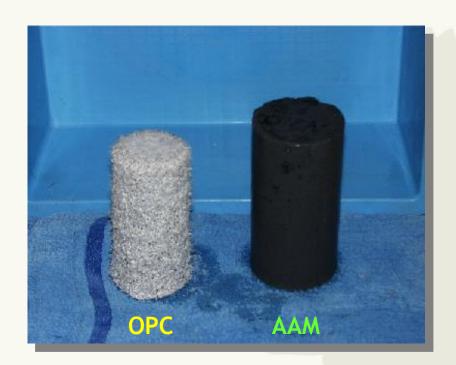
Sulfuric Acid Attack

Biogenic Sulfuric Acid Attack

Acid Resistance Test in Germany for AAM Treatment

Test Under 2% H₂SO₄ for 28 Days

Concrete Mortar



Acid Immersion Tests in Japan for AAM Protection

OPC

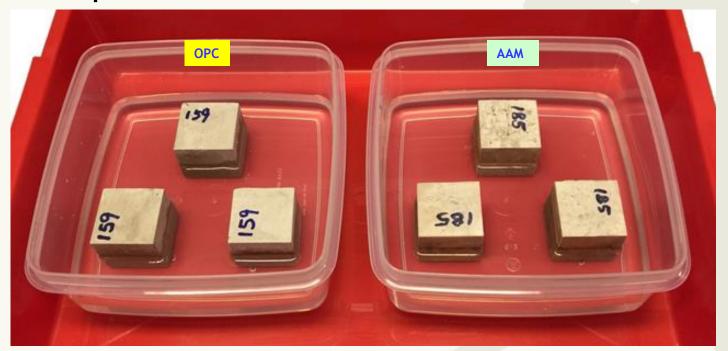
Weight Loss 31%

5%H₂SO₄(pH=0.4)30Days Immersion

AAM

Weight Gain 0.5%

Acid Resistance (Long Term Test) for AAM Coated Specimens

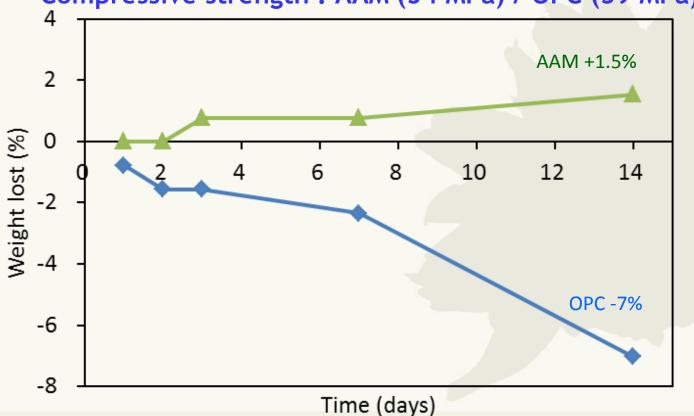


Long Term Test: 1 / 2 / 3 / 6 / 12 Month → Surface No Damage

Acid Resistance for AAM Specimens

- Demould within 24 hours
- Submersion in 5% H₂SO₄ solution (pH~0.5)
- Cubic specimens with OPC & AAM

Tests performed by NAMI



Acid Resistance of AAM Specimens

Residual properties after 14-day acid (pH~0.5) immersion

Compressive strength: AAM (54 MPa) / OPC (39 MPa)

Remarks

- > Alkali activation is a green materials technology contributing to the sustainable development with low carbon footprint
- Alkali activated material (AAM) is a prominent alternative cementing material for replacing commonly used OPC-based
- Initial usage of AAM can be considered for those repair areas requiring rapid strength development and chemical resistance such as highways and sewerage structures
- Next possible application may be precast concrete components due to high early strength and they can be produced under factory controlled conditions

Technology

Ongoing Works

- In order to allow the full use of AAM in buildings and structures, the current concrete specifications may need to be adjusted or upgraded in line with the world's trend on performance-based standards or approach
- Future standards in the area of concreting materials should be based on performance criteria and open the potential to integrate or incorporate new technologies
- > Studies and trial comparisons of the performance between traditional OPC concrete and AAM concrete are urged to be established by public and private stakeholders
- The world looks for greener construction materials, it may be a starting point for engineers in Hong Kong considering the AAM technology as alternative green concrete materials

20.04.2016

Transforming our Built Environment 共建綠色 建築環境 Standing Committee on Concrete Technology

Annual Concrete Seminar 2016 "Green Concrete"

Thank You!

