Concrete Durability Requirements in Public Works Projects

Speakers Ir. P. C. Wong Ir. Peter LEUNG

Advisor of SCCT Senior Engineer, CEDD

Content

Part 1 Durability of Reinforced Concrete Structures

- Introduction
- Factors Affecting Durability of RC Structures
- Deterioration of Structures
- Measures to Improve Durability
- **Durability Tests**

Content

- Part 2 Requirements for Durability in Public Works Projects
 - Cementitious Content
 - W/C Ratio
 - Workability
 - Concrete Temperature Control
 - **Durability Requirements of Concrete**
 - Concrete Coating and Surface Treatment

Part 1 Introduction

Durability

Prof. A.M. Neville, "Properties of Concrete"

It is essential that concrete should withstand the conditions for which it has been designed, without deterioration, over a period of years. Such concrete is said to be durable.

Durability

BS8110 – Structural use of concrete

A durable concrete element is one that is designed and constructed to protect embedded metal from corrosion and to perform satisfactorily in the working environment for the life-time of the structure.

Durability

BS EN 1992-1-1:2004 Design of concrete structures. General rules and rule for buildings

• The choice of adequately durable concrete for corrosion protection of reinforcement and protection of concrete attack, requires consideration of the composition of concrete. This may result in a higher compressive strength of the concrete than is required for structural design.

• Strength = Durability ?

Design Life

Port Works Manual, 1996 edition

- The design life of a structure is taken to be its intended useful life, and will depend on the purpose for which it is required.
- Design life for all permanent marine structures should be 50 years.

Service Life

Structures Design Manual, HyD

- In the design of highway structures, due consideration should be given to durability during the service life. Achievement of durability is primarily affected by design and detailing, material specifications and quality of construction.
- The specific durability requirements of a structure should be assessed during the design stage and measures for their achievement should be considered.

Total Design Life Solution vs Maintenance & Repair Design Life Solution

- Commonly used 120 years design life
- Meaning of 120 years design life:
 - 1. Total design life solution (i.e. no major maintenance) or
 - 2. No replacement but continued maintenance

Factors Affecting Durability of RC Structures

External Factors

- Temperature
- Humidity
- Chloride
- Chemicals including sulphate
- Climate factors like sunshine, freeze and thaws
- Oxygen and bacteria

Description	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Mean (mm)
Mean Temperature (°C)	15.8	15.9	18.5	22.2	25.9	27.8	28.8	28.4	27.6	25.2	21.4	17.6	23
Range of Mean Daily Temp (°C)	3.7	3.2	3.0	3.1	3.1	2.7	3.3	3.2	3.4	3.7	4.0	4.0	3.4
Mean Relative Humidity (%)	71	78	81	83	83	83	82	81	78	73	69	68	77

Summary of Hong Kong Climatic Data Over the Past 45 Years

Factors Affecting Durability of R.C. Structures

Internal Factors

- Quality of Raw Materials
- Mix Design
- Alkali Aggregate Reaction
- Workmanship
- Curing

Factors Affecting Durability of R.C. Structures

Other Factors

- Structural cracks and damages due to inadequate structural design and detailing, or concrete shrinkage
- Use of chemicals and seawater for household maintenance
- Concrete coating

Environments encountered

- Embedded below ground
- Submerged zone
- Tidal zone
- Splash zone
- Atmospheric zone

Environments encountered

MARINE EXPOSURE CONDITIONS

Deterioration due to AAR

- Reinforcement
- Measures to Impair Corrosion Process
- Improvements on Concrete Properties

Reinforcement

- Galvanized steel bars
- Epoxy coated reinforcement
- Stainless steel bars
- Carbon fiber reinforcement

Reinforcement: Galvanized Steel Bars

Reinforcement: Epoxy Coated Reinforcement

Reinforcement: Stainless Steel Bars

Source: International Molybdenum Association

Reinforcement: Carbon Fiber Reinforcement

Measures to Impair Corrosion Process

Increase concrete cover

• Marine concrete (GS Section 21): Min. 75 mm

Measures to Impair Corrosion Process

Coating

- Silane protection
- Epoxy coating

Silane protection

Applying the impregnation material on the Test Panel

Measures to Impair Corrosion Process

Coal Tar Epoxy

Measures to Improve Durability Measures to Impair Corrosion Process

Apply process such as impressed cathodic protection system

Corrosion Process

Anode: Fe --> $Fe^{2+} + 2e^{-}$ Cathode: $0.5O_2 + H_2O + 2e^{-} --> 2OH^{-}$

Figure 2.1 The anodic and cathodic reactions.

- Bulk Diffusion Test
- Chloride Ion Penetration Test

Figure 2 - The Location of Cores on 2m x 2m x 0.3m Panel

Bulk Diffusion Test

Bulk Diffusion Test

Results of Bulk Diffusion Test

Fig 3 - Mean Choride Profiles of PFA Concretes at 84 Days

Durability Performance Tests

Chloride Ion Penetration Test

CS1:2010 - Section 19 Determination of concrete's ability to resist chloride ion penetration

Durability Performance Tests

Chloride Ion Penetration Test

Charge Passed	Chloride Ion Penetrability
(Coulombs)	
>4000	High
2,000-4,000	Moderate
1,000-2,000	Low
100-1,000	Very Low
<100	Negligible

Part 2

Requirements for Durability in Public Works Projects

• **Specification of concrete** Aim:

To achieve state of art concrete quality with good durability performance

Requirements for Concrete Durability in Public Works Projects

- Cementitious Content
- W/C Ratio
- Workability
- Concrete Temperature Control
- Durability Requirements of Concrete
- Concrete Coating and Surface Treatment

Cementitious content

Cementitious Materials

- Cement
- PFA or GGBS
- Microsilica

Minimum Cementitious Content

GS Section 16, (from Table 16.2 of GS):

Grade strength (MPa)	20	25	30	35	40	45	50
Minimum cementitious content (kg/m ³)	270	290	310	330	350	375	400

Marine Concrete (GS Section 21)

- 380 kg/m³

Highways Project 1

- Grade 45: 350 kg/m³ for all pile caps and 400 kg/m³ for all bored piles
- Grade 60: 400 kg/m^3 for deck span, crossbeams and towers

Highways Project 2

– Same as GS

Drainage project

– Same as GS

Maximum Cementitious Content

GS Section 16

- For water retaining/water tight structures: 400 kg/m3 if use PC;
 450 kg/m3 if use PC and PFA
- Other structures: 550 kg/m3

Marine Concrete (GS Section 21)

- 450 kg/m3

Highways Project 1

- Grade 45: 450 kg/m3 for all pile caps and 500 kg/m3 for all bored piles
- Grade 60: 550 kg/m3

Highways Project 2

- Same as GS

Drainage Project

- Same as GS

WSD Project

- The total cementitious content for salt water water-retaining structure shall not be less than 360kg/m3 and shall not exceed 430kg/m3.

Cementitious Content: PFA, GGBS and Microsilica

	GS Section 16	Marine Concrete (GS Section 21)	HyD project 1	HyD project 2	DSD project	WSD Project
Requirements	Optional use of PFA & GGBS	Specified the use of CSF with either PFA or GGBS	Concrete grade 40 or above must contain wither PFA or GGBS. CSF may be used.	Concrete grade 40 must contain PFA. Grade 50 or 60 must contain CSF	Concrete grade 40 or above, PFA must be added. Grade 35 or below, either PFA or GGBS shall be added.	PFA must be used.
PFA	Normal concrete: not exceeding 35% Pile cape/ substructure: at least 25%	25 - 40% of total cementitious content	 25 - 40% of the specified minimum cementitious content Min. 35% for Grade 60 concrete 	25 - 40% of the specified minimum cementitious content	25-40% by mass of the cementitious content for concrete of Grade 40 and above for normal application	25-40% by mass of the total cementitious content
GGBS	35-75% for normal concrete (Proposed)	60-75% of total cementitious content	 60-80% of the specified minimum cementitious content Min. 60% for Grade 60 concrete 	Not specified	 60-75% by mass of cementitious content for normal application 60-90% by mass of cementitious content for low heat application 	Not specified
Microsilica	Not specified	5-10% of total cementitious content	Up to 8% of the specified minimum cementitious content	 Generally > 8% Min. 8% by weight of cementitious material for Grade 50 and 60 concrete 	5-10% by mass of the cementitious content	Not specified

Maximum water/cement ratio

Workability

GS Section 16

- Minimum design slump shall be 75 mm

Marine concrete (GS Section 21)

- Same as GS Section 16

HyD project 1

- Same as GS Section 16

HyD project 2

- The workability of concrete is not specified but shall be proposed by the Contractor. Concrete workability of less than 75mm slump will not normally be acceptable.

DSD project

- Same as GS Section 16

WSD project

- Same as GS Section 16

Concrete Temperature Control

HyD project 1

- Concrete grade 40 and above: placing temperature shall not exceed 30°C; grade 20 40, not exceed 32°C
- If section ≥ 500 mm, placing temperature shall not exceed 25° C
- Peak temperature shall not exceed 70° C; if contain at least 25% PFA or 45% GGBS, then the peak temperature shall not exceed 80° C
- For large section, temperature differential (center to surface) shall not exceed 30° C. The max temperature difference between any points at 600mm apart shall not exceed 30° C.

HyD project 2

- Placing temperature shall not exceed $32^{\circ}C$
- Peak temperature shall not exceed 70° C
- Temperature gradient (center to surface) shall not exceed 20° C per m

DSD project

- Concrete grade 45 or above, the peak temperature shall not exceed 70°C. The maximum temperature difference (center to surface) shall not be greater than 20°C per m
- Concrete grade 40 or below, placing temperature shall not exceed $32^{\circ}C$

WSD project

- Placing temperature of concrete for water retaining structures shall not exceed $32^{\circ}C$

Durability Requirements of Concrete

GS Section 16 and Marine Concrete (GS Section 21)

None, except strength requirements

HyD project 1

 Grade 60 concrete: AASHTO T277-93, Mean value less than 1000 coulombs at 28 days

HyD project 2

– Same as GS Section 16

DSD project

- Water sorptivity test: not exceeding 0.07 mm/min
- AASHTO T277 at 28 days not exceeding 1000 coulombs

CS1:2010 - Section 19 Determination of concrete's ability to resist chloride ion penetration

Other Durability Requirements

Sulphate Soundness of Aggregates

• GS Section 16

- Magnesium sulphate soundness weighted average loss shall not exceed 6%
- Marine Concrete (GS Section 21)
 - Same as Section 16
- DSD project 1
 - Maximum sodium sulphate soundness (ASTM C88) weighted average loss shall be 6%
- DSD project
 - Similar to DSD project 1

Other Durability Requirements

Alkali-silica Reaction (ASR)

- PAH: Chapter 5, Appendix 5.9
 - Additional requirements imposed referring to GEO Report No. 167
- GS Section 16
 - Inert to ASR unless a control framework installed
- GS Section 21
 - Same as Section 16
- HyD project 1
 - Similar to GS
- HyD project 2
 - Similar to GS and PAH
- DSD project
 - Similar to GS and PAH

Concrete Coating and Surface Treatment

- GS Section 16
 - No particular requirement
- GS Section 21 (marine concrete)
 - PS to Model Specification for Protective Coatings for Concrete. Allowing the use of epoxy resin, acrylate, polyurethane resin and monomeric isobutyltriethoxysilane coatings.
- HyD project 1
 - Silane protection
- HyD project 2
 - No particular requirement
- DSD project
 - No particular requirement

End of Presentation

Thank you!

