Carbon Dioxide (CO₂) Emissions of Concrete

Presented by: Ir. Stephen Leung Arup Materials Technology

Presentation Content

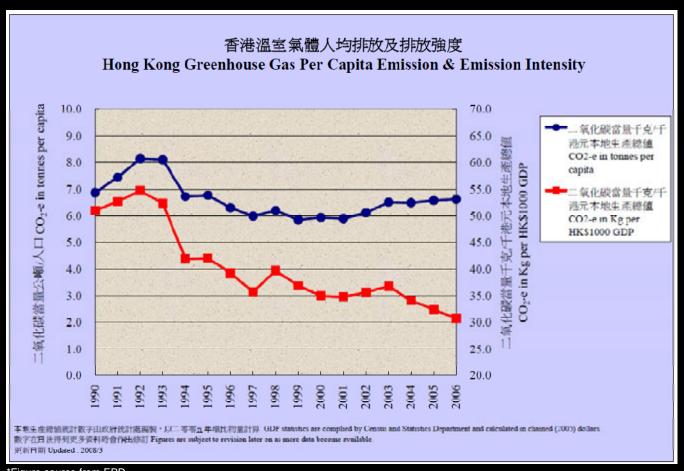
- Global Warming
- Hong Kong Climate Changes and CO₂ Emissions
- Carbon Footprint (t CO₂) and Reducing Carbon Emission
- Embodied CO₂ (eCO₂) of Reinforced Concrete
- Possible Alternatives
- Challenges
- Summary

Global Warming

- Global Warming is caused by sharply increased greenhouse gases emission by human activities
- In the building industry, carbon dioxide (CO₂) emission mainly comes from cement production
- It accounts for 2% 3 % of human generated CO₂ production and consumes about 0.5% of total energy consumption.
- Concrete, as a material, can never be truly sustainable, but we can reduce its impact on the environment

Hong Kong Climate

- The Hong Kong Observatory
 - No. of "cold days" are declining
 - No. of "hot nights" are increasing
 - Urban areas are warmer than the countries side by 6°C in some of the late evenings

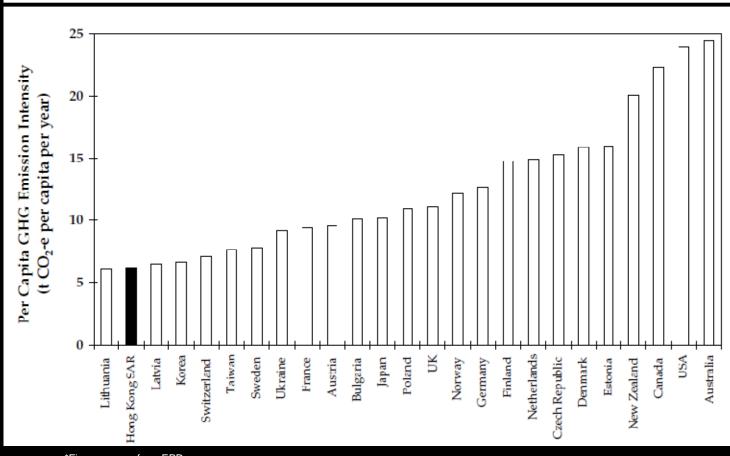

Hong Kong Climate

- Tall buildings in Hong Kong are heated up during the day and release thermal energy over night
- Tall buildings also surround the inner city and inhibit the cooling effect of air circulation

RESULTING HOT WEATHER!!

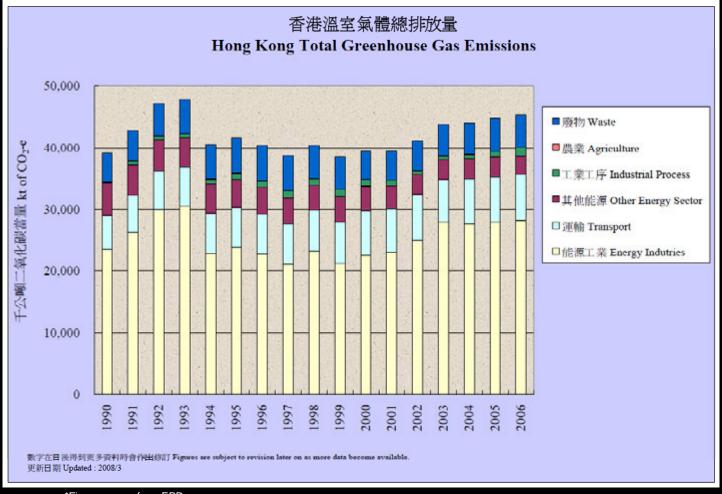
Hong Kong CO₂ Emissions

In Hong Kong, greenhouse gas emissions are approximately 6 tons CO₂ equivalent per capita


*Figure source from EPD

Hong Kong CO₂ Emissions (2)

• CO₂ emission per capita in Hong Kong is relatively low when compare to other international developed countries


Per Capita Emissions of Major GHGs in Selected Economies in 1997 (2)

*Figure source from EPD

Hong Kong CO₂ Emissions (3) • The largest growth in CO₂ emissions has come from power

 The largest growth in CO₂ emissions has come from power generation and road transportation

Carbon FootPrint (t CO₂)

• Carbon footprint is used to calculate the amount of damaged caused by an individual, household, institution or business to the environment through harmful carbon dioxide emissions.

Carbon FootPrint (t CO₂) – Reducing tCO₂ Emissions

 Reducing tCO₂ emission is essential for sustainable environment

• Can be achieved by:

- Calculating the "carbon footprint" and identify routine of most carbon consume activity. Where possible, minimize those activities. E.g. Walking or Cycling instead of driving.

Embodied CO₂ (eCO₂)

 One way to measure carbon footprint in reinforced concrete is by unit of embodied CO₂ (eCO₂)

Definition:

"Embodied CO₂ is defined as the CO₂ produced over a defined part of the life cycle of the product. The CO₂ is primarily associated with the consumption of energy over the relevant part of the life cycle, but can also include emissions which occur directly as a result of the production process."

So what does the eCO₂ have to do with reinforced concrete?

Let's take a look at some figures...

ECO ₂ (tCO ₂ /t)	Notes	Source	Author	Country	Year published
0.074	20% fly ash by mass of cement	Environmental life cycle inventory of Portland cement concrete ¹	Athena Sustainable Materials Institute	United States	2002
0.114	Substructure	Steel Construction Institute ²	Eaton and Amato	United Kingdom	1998
0.129	14% cement by mass of concrete	Environmental life cycle inventory of Portland cement concrete	Athena Sustainable Material Institute	United States	2002
0.180		Australian life cycle inventory of Portland cement concrete ³	Sima Pro RMIT	Australia	1999
0.202	Superstructure	Steel Construction Institute	Eaton and Amato	United Kingdom	1998

• More figures...

Material	EE, GJ/tonne	ECO ₂ , kg/tonne	IStructE Values ECO ₂ (kg/tonne)	Comments
Structural steel sections	24.5-25.5	1799-2450		
	25	2100	2030	
Steel reinforcement	11-17.3	460-1190		100% recycled material
	14	825	2030	
Steel sheet	14.5-27	1160-2160		
	21	1660	2698	
Unreinforced concrete	0.67-3.1	60.2-310		Lower values for lower strength material
	0.95	120	163 (reinforced)	Higher values if cement is CEM1 with no pfa or ggbs in mix
Softwood	4.1-13	430-1450		
	7.2	1100	1644	
Hardwood	5.5-15.9	430-1640		Lower values for locally sourced, air dried timber
	9.7	1140	2136	
Glass	8.5-18.5	80-1130		
	14	?	1130	
Aluminium extrusion	120-184	6780-10190		33% recycled content
	153.5	8490	29200	

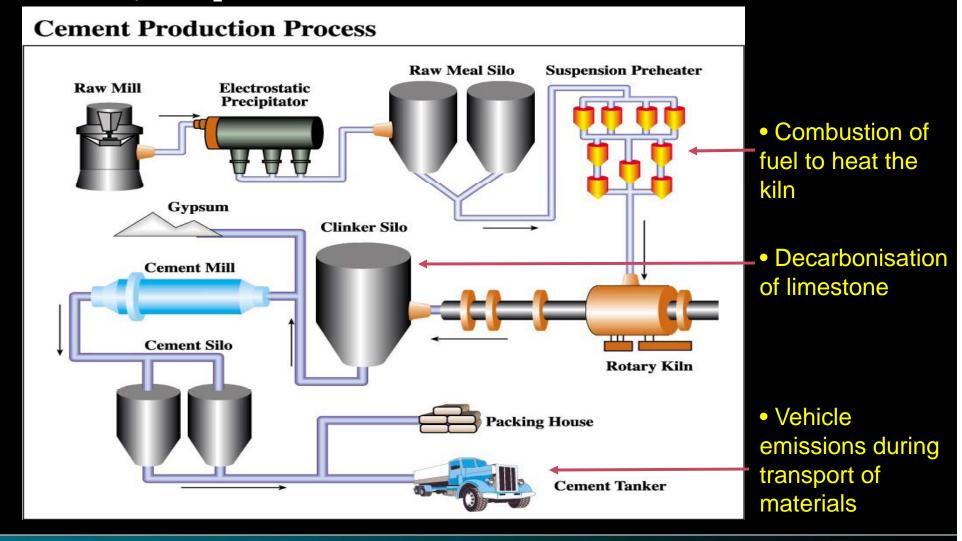
eCO₂ of reinforced concrete (1)

•When comparing eCO₂ of concrete 0.12t/t with cement 0.88t/t or with other building materials (e.g. steels) 0.82t/t, the eCO₂ of concrete is relatively not that high.

Sources of eCO2 for Reinforced Concrete

Comes from:

- Constituent materials
- The fuel and process used to manufacture Portland Cement
- The amount of Portland Cement replacement
- The strength class of the concrete and the resulting mix composition
- The level of steel reinforcement
- Transports impacts of the aggregate and cement


eCO₂ from Concrete Constituents (1)

Portland Cement

- Portland cement has very high embodied CO₂ content
- Cement manufacture is energy intensive
- Recent data on global CO₂ emissions from cement manufacture give an overall average of 0.88 ton CO₂ per ton of cement produced. This figure includes all types of cement.

Cement Production Process

The major CO₂ emissions arise from three sources:

eCO₂ from Concrete Constituents (2)

Aggregates

Aggregates have a very low embodied CO₂ compared to Portland cement and contribute only 3% to the total for reinforced concrete.

 Transportation of the aggregate to the batching plant and to site accounts for most CO₂

emission.

Transport	UK Environmental Agency transport emissions (gCO ₂ / t km)
Road	317
Rail	41
Water	9

eCO₂ from Concrete Constituents (3)

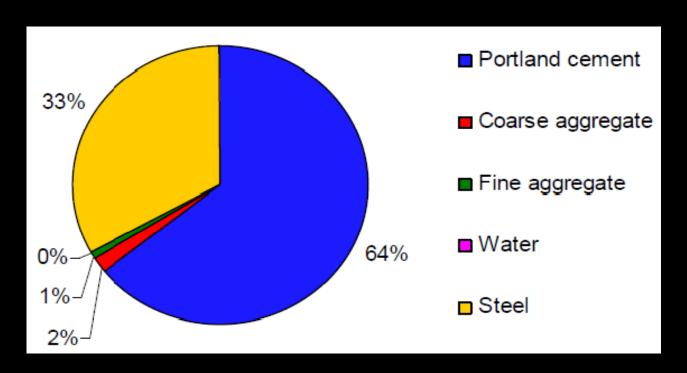
Other major constituents

 The eCO₂ figure presented is based on fair estimate in UK industry.

Material	eCO ₂ (tCO ₂ /t)
CEM I (Portland cement)	0.822 ⁴
Coarse aggregate	0.008 ⁵
Fine aggregate	0.0053 ⁴
Water	0.000000249 ⁴
Reinforcement steel	0.97 ⁴ (predominately recycled)

eCO₂ from Concrete Constituents (4)

Secondary Cementitious Material


• eCO₂ source data is available for Finland, UK and US. Though there is variation between the source data, PFA and GGBS has significantly lower eCO₂ value than Portland Cement

Material	Finnish eCO ₂ ¹¹ (tCO ₂ /t)	UK eCO ₂ (tCO ₂ /t)	US eCO ₂ (tCO ₂ /t)
Portland cement	0.670	0.8224	0.900 ¹
Fly ash	0.0053	0.011 ^a - 0.025 ¹²	0.002 ¹³
GGBS	0.026	0.050 - 0.070 ¹⁵	0.028 ¹⁵

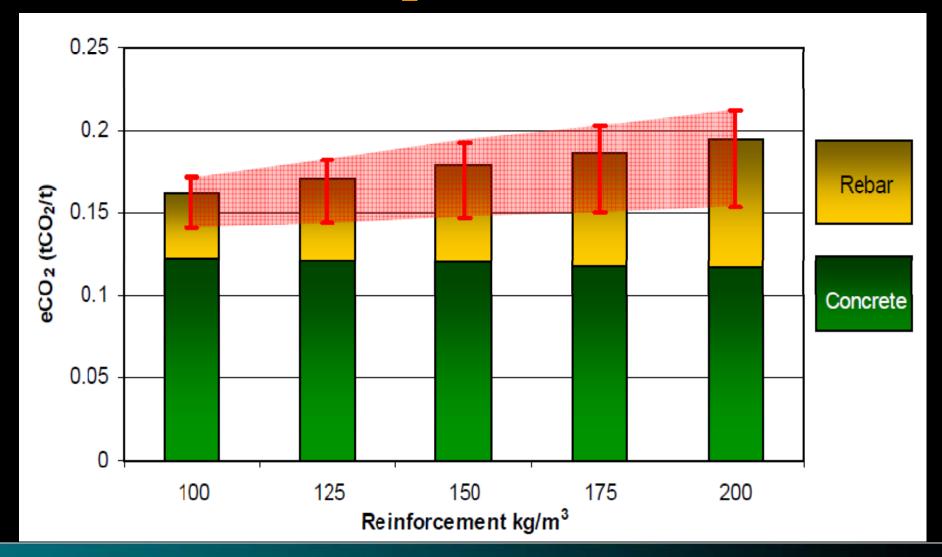
eCO2 from Concrete Constituents (5)

For a typical C32/40 mix

• The eCO₂ is contributed by each of the concrete constituents is as follows:

Variations of eCO₂ in Concrete Strength and Mix Design

 eCO₂ also varies by strength class (i.e. the amount of cement content in the mix)


Class	Cement (kg/m³)	Coarse aggregate (kg/m ³)	Fine aggregate (kg/m ³)	Water (kg/m³)	ECO ₂ (tCO ₂ /t)
C8/10	180	1025	912	189	0.07
C25/30	290	1053	826	176	0.11
C28/35	320	1059	801	174	0.12
C32/40	350	1066	773	174	0.13
C40/50	430	1000	796	174	0.15
C50/60	450	1175	600	149	0.16

eCO₂ in Reinforcement

- eCO₂ varies only slightly with steel reinforcement
- Reducing cement content will have greater effect than reducing the weight of reinforcement

kg/m ³ of steel reinforcement	100	125	150	175	200
tCO ₂ /t of reinforced C32/40 concrete	0.16	0.17	0.18	0.19	0.194

Level of Reinforcement with respect to eCO₂ levels

What to Do? Possible Alternatives

- 1. Reduce CO₂ emissions using other types of cement manufacturing process
- 2. Reduce Portland cement consumption
- 3. Reduce primary aggregate usage

Possible Alternatives 1 Reduce CO2 Emissions through Other Cement Manufacturing

Examples of Possible Approaches –

- Magnesium Based Chemistry instead of Calcium Based Chemistry
- Sample product includes:
 - CeramiCrete
 - EcoCement

CeramiCrete

- Product developed by Argonne National Labs (a US Department of Energy Laboratory)
- Uses magnesium-based chemistry instead of Portland cement's calcium-based chemistry
 - Product formed by mixing magnesium oxide and soluble phosphate powder with water to form a phosphate ceramic (No CO₂ producing carburization process involved)

CeramiCrete

- Developed as a material for solidifying industrial waste
- Used for repairing roads
 - E.g. Illinois Tollways and Chicago Skyway (US)
- Major drawback for the choosing this material for constructing the whole road is cost. It is 3 to 4 times more expensive than Portland cement.

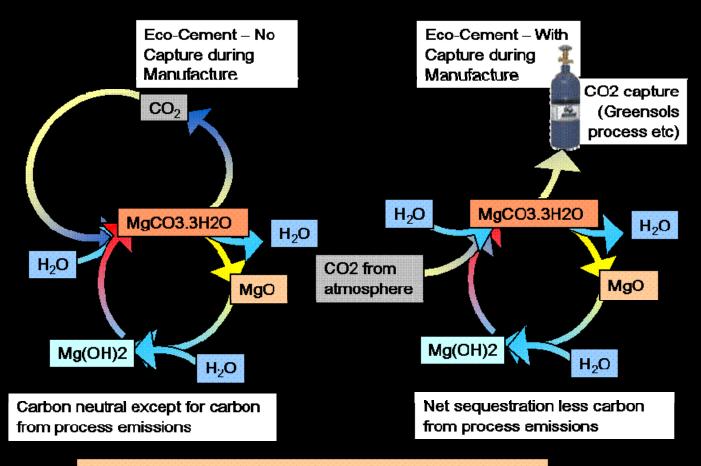
CeramiCrete

Ceramicrete concrete repair material intact and supporting vehicle traffic on surface road cracks

EcoCement

- Product developed by TecEco (Australian research and development company)
 - Another magnesium-based material being marketed as an alternative
- Made by blending reactive magnesium oxide (magnesia) with Portland cement.
 - Magnesia is currently made from magnesite (MgCO₃) using energy to drive off the CO₂ from the carbonate (CO₃).
- Can be mixed with fly ash or ground granulated blast furnace slag
 - Offers better environmental credentials

EcoCement


• Environmental claims:

- Less energy is used to make magnesia than Portland cement
- When use as porous concrete (e.g. concrete pavements), it can absorb CO₂ from the atmosphere. (though this is also true for PC porous concrete due to process called carbonation!)

• Major Drawback:

- The environmental impact and availability of extracting magnesite from the ground not known
- Magnesite is not available globally, source in China, impact of transportation
- Limited applications for porous concrete
- EcoCement is not readily available in commercial scale

Reduce Portland Cement Consumption EcoCement

Use of non fossil fuels => Low or no process emissions

Note the CO₂ capturing during manufacturing can also be achieved if technology is available for Portland Cement Concrete

Possible Alternatives 2 Reduce Portland Cement Consumption

- Secondary cementitious materials
 - Ground granulated blast-furnace slag (GGBS)
 - Pulverized fly ash (PFA)

Other Examples of Possible Approaches

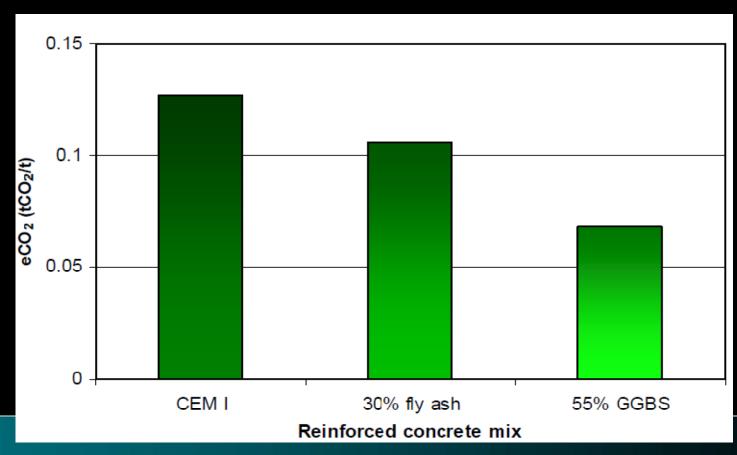
- C-Fix
- Air and foam-based concretes

Reduce Portland Cement Consumption Ground granulated blast-furnace slag (GGBS)

- •GGBS is generally used in proportions of 40-70% of the total cementitious materials content in structural concrete, and up to 95% in specialist applications.
- •55% GGBS can reduce the embodied CO₂ content of a typical C32/40 concrete from approx. 115 kg CO₂/ton to approx. 60 kg CO₂/ton.

Reduce Portland Cement Consumption Ground granulated blast-furnace slag (GGBS)

Major Drawback:


- Sources of GGBS not readily available in Hong Kong. i.e. not economical to import blast furnace slag from steel mill.
- Current specification not cater to adopt the use of blast furnace slag as substitution.
- In UK current demand for ggbs exceeds its production by approx. 50%, i.e. needs importation (though by sea) and maybe not truly sustainable.

Reduce Portland Cement Consumption Pulverized Fly Ash (PFA)

- Fly ash is generally used in proportions of 25-30% of the total cementitious materials content in structural concrete
- 30% fly ash can reduce the embodied CO₂ content of a typical C32/40 concrete from approx. 115 kg CO₂/ton to approx. 85 kg CO₂/ton.
- Sources readily available in Hong Kong.

Reduce Portland Cement Consumption eCO₂ in GGBS & PFA

• For C32/40 concrete mix, reduction of eCO₂ is shown through use of secondary cementitious materials.

Reduce Portland Cement Consumption eCO₂ in GGBS & PFA

 More figures is shown in terms of percentage saving of eCO₂ through use of secondary cementitious materials.

C32/40	eCO ₂ (tCO ₂ /t)	eCO ₂ saving
CEM1	0.13	-
30% fly ash	0.11	17%
55% GGBS	0.07	48%

Reduce Portland Cement Consumption C-Fix

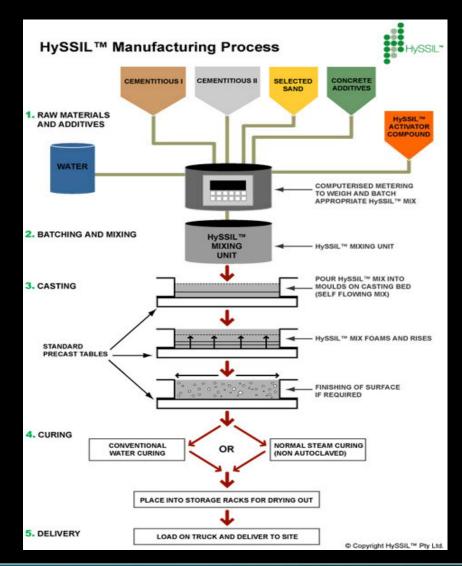
- Product developed by Shell and stands for carbon fixation.
- A carbon-rich thermoplastic binder made from dense, carbon-rich residue left over after crude oil has been refined.
 - Mixed using standard asphalt techniques at a temperature of about 200°C.
- Applications include use in breakwater blocks, modular road constructions, paving blocks, and liquid-tight, acid-resistant floor elements.

Reduce Portland Cement Consumption C-Fix

- Use of one ton of *C-Fix* composite (binder + aggregate) fixes 150kg of CO₂. i.e. net saving to reduce 150kg of CO₂
 - Calculated by assuming 1 ton of composite contains 60kg of carbon, which equates to 170kg of CO₂

Major drawback:

- Limited use in structural applications where it is subject to pressure and high temperatures due to some degree of creep with time.
- Product depends on crude oil processing i.e. extract, refine, and burning products
- Ideally if less crude oil is used, CO₂ levels in the atmosphere would be lower automatically and no residue would be produced. i.e. No need for alternative


Reduce Portland Cement Consumption Air and Foam Based Concrete

- Foam-based concretes and Autoclaved aerated concrete (AAC) products (with up to 60-70% air content)
 - Provide suitable alternative material for low strength applications because they use less cement per cubic metre, and little or no aggregate.
- Australia's CSIRO developed another aerated cementitious (cement-based) product, *Hessle*, that is as strong as normal concrete, is lightweight, and provides up to five times the thermal insulation properties of concrete.
 - Reduces CO₂ emissions by increasing the energy efficiency of the building and reducing the energy used during transportation and construction of the lightweight elements.

Reduce Portland Cement Consumption Air and Foam Based Concrete

- Major Drawbacks:
 - Foam-based concrete and AAC cannot replace normal structural concretes only strengths of up to 15N/mm² can be achieved.
 - AAC manufacture process requires high temperature and high pressure steam cure in an autoclave.
 - Energy (in terms of CO₂ emissions) used to operate the autoclave has to be balanced against the savings made by reducing the cement content.

Reduce Portland Cement Consumption Air and Foam Based Concrete

Possible Alternatives 3 Reduce Primary Aggregate Usage

- Recycled aggregate
- Provisions included in BS 8500-2
 - Composition & use
- Only coarse aggregate
- High demand as fill and road base

Recycled aggregate stoc kpile

Challenges

- The listed Portland cement substitutes products are rather new, largely unproven and not readily available
- Portland cement concretes are cheap, well established and readily-available materials, any alternatives will have to compete on costs and demonstrate advantage(s) over Portland Cement.

Challenges

- Lack of Material Specifications
 - Current exclusions (e.g. GGBS)
 - Need some changes forthcoming
- Recycled Aggregate supply
 - Location (transportation)
 - Continuity
 - Supplier reluctance
 - Cost

- •Global Warming is caused by the sharply increased greenhouse gases (GHG) emission by human activities with cement production accounting for 2% 3% of CO₂ emission or 0.88t CO₂ per ton of cement produced.
- The most significant GHG emitted in Hong Kong is carbon dioxide and significant source comes from electricity generation.

- Transportation (in general) is the second largest source of CO₂ emissions in Hong Kong.
- In the context of increased local environmental awareness, all industries have obligation of contributing towards alleviating global environmental problems

Every Little Bit Helps!

In Construction Industry

- Concrete, as a material, can never be truly sustainable, but there are things we can and should do to reduce its impact on the environment
- Search for alternatives to cement will undoubtedly grow as pressure increases to meet CO₂ emission targets.

In Construction Industry

- Portland cement concretes are cheap, well established and readily-available materials, any alternatives will have to compete on costs and need further researches.
- Therefore, use of PFA or GGBS is recommended to be maximized

References

- A. Kendall. "Concrete Infrastructure Sustainability: Life Cycle Metrics, Materials Design, and Optimized Distribution of Cement Production" Report No. CSS07-07, May 2007. University of Michigan, USA.
- 2. Barker T., I. Bashmakov, L. Bernstein, J. E. Bogner, P. R. Bosch, R. Dave, O. R. Davidson, B. S. Fisher, S. Gupta, K. Halsnes, G.J. Heij, S. Kahn Ribeiro, S. Kobayashi, M. D. Levine, D. L. Martino, O. Masera, B. Metz, L. A. Meyer, G.-J. Nabuurs, A. Najam, N. Nakicenovic, H. -H. Rogner, J. Roy, J. Sathaye, R. Schock, P. Shukla, R. E. H. Sims, P. Smith, D. A. Tirpak, D. Urge-Vorsatz, D. Zhou, 2007: "Technical Summary. *In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*" [B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, L. A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- 3. Environmental Resources Management. "Greenhouse Gase Emission Control Study: Revised Executive Summary", Dec 2000. HKSAR Environmental Protection Department, Hong Kong.
- 4. K.L. Chan. "Climate Issues in Hong Kong: Mitigation and Adaptation" Sep 2006. Yale University.
- 5. K. Quillin. "Cements with Lower Environmental Impact" June 2008. BRE IP 7/08, Watford, UK.
- 6. O. Poon. "Sustainable Development of Hong Kong" June 2007. Council for Sustainable Development, Hong Kong.
- 7. http://www.anl.gov/techtransfer/Available_Technologies/Material_Science/Ceramicrete/index.html
- 8. http://www.c-fix.com/english/default.htm
- 9. http://www.epd.gov.hk/epd/english/environmentinhk/air/data/emission_inve.html
- 10. http://www.hyssil.com/technology.htm
- 11. http://www.tececo.com/simple.eco-cement.php

Thank You

Q & A