Performance Criteria for Self-Consolidating Concrete

Annual Concrete Seminar 2007

Albert K. H. Kwan Department of Civil Engineering The University of Hong Kong 28 February 2007

Problems Encountered

- Present situation
 - Multi-layer of reinforcing bars
 - High density of reinforcement
 - Small clearance between reinforcing bars
 - Complex formwork shape
 - Quality of compaction highly dependent on skill of workers
- Consequences
 - Difficulties in compaction
 - Strength and durability problems
- Solution
 - Use of self-consolidating concrete (SCC)

Properties of SCC

- High workability
 - Able to deform and flow just by its own weight
- High filling ability
 - Able to fill up confined spaces and far-reaching corners
- High passing ability
 - Able to pass through small clearances between closely spaced reinforcing bars
- High segregation stability
 - Able to remain homogeneous after flowing, dropping and passing through obstacles

Real Projects Employing SCC

- Akashi-Kaikyo Bridge
 - 240,000 m³ of SCC was used for the two bridge anchorages
 - Concrete was pumped through 200 m and dropped up to 3 m without segregation
 - Construction time was shortened from 2.5 to 2 years
- A LNG tank in Japan
 - Number of lifts was reduced from 14 to 10 in casting a 38.4 m high wall
 - Number of workers was reduced from 150 to 50
 - Construction period was shortened from 22 to 18 months

Performance Attributes of SCC

Workability

- Two measures of workability
 - Deformability: ability to deform
 - Flowability: ability to flow
- Low- to medium-workability concrete: deformability is a better measurement of workability
- High-workability concrete: Flowability is a better measurement of workability
- Factors affecting workability
 - Water content
 - Superplasticizer dosage

Filling Ability

- Ability of the concrete to squeeze through narrow gaps and channels under the hydrostatic pressure of its own weight to fill up confined spaces and far-reaching corners
- Usually measured in terms of filling height
- Factors affecting filling ability
 - Workability
 - Cohesiveness
 - Aggregate proportion

Passing Ability

- Ability of the concrete to pass through small clearances between closely spaced reinforcing bars
- Usually measured in terms of reduced flowability of the concrete after installing a set of closely spaced reinforcing bars
- Factors affecting passing ability
 - Workability
 - Cohesiveness
 - Maximum aggregate size
 - Coarse aggregate content

Segregation Stability

- Ability of the concrete to resist segregation to remain homogeneous after flowing, dropping and passing through obstacles
- Usually measured by placing the concrete onto a porous tray and measuring the amount of paste and mortar dripping through the pores of the tray
- Factor affecting segregation stability
 - Cohesiveness

Test Methods and Acceptance Criteria

Test method for SCC

- Slump flow test
 - Workability
- V-funnel test
 - Workability
- U-box test
 - Filling ability and passing ability
- J-ring test
 - Passing ability
- Sieve segregation test
 - Segregation stability

Slump Flow Test

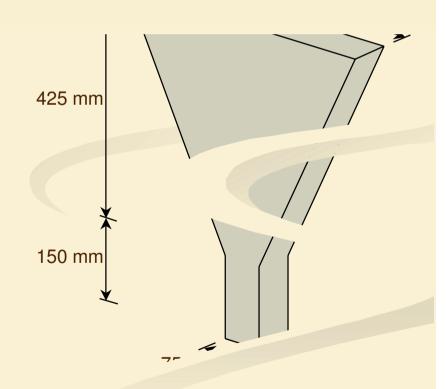
- Similar to the slump test for conventional concrete
- Apparatus
 - Slump cone
 - Flat, smooth and level steel base plate
- Procedure
 - Concrete is filled into the slump cone without tamping and trowel flat the top surface
 - Lift the slump cone steadily to allow the concrete to flow and deform

Slump Flow Test

- Measured values
 - Slump: drop in height of the concrete
 - Slump flow: diameter of the concrete patty
- Slump flow test is NOT the same as the flow test stipulated in BS 1881:

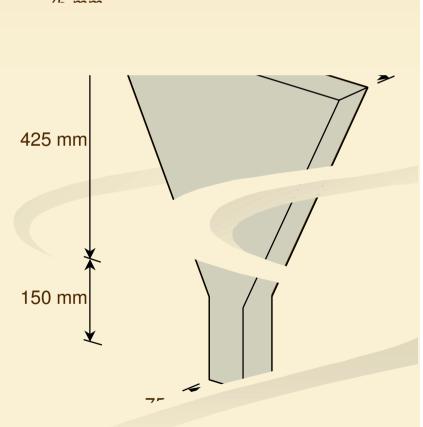
Part 105: 1984

Not suitable for SCC

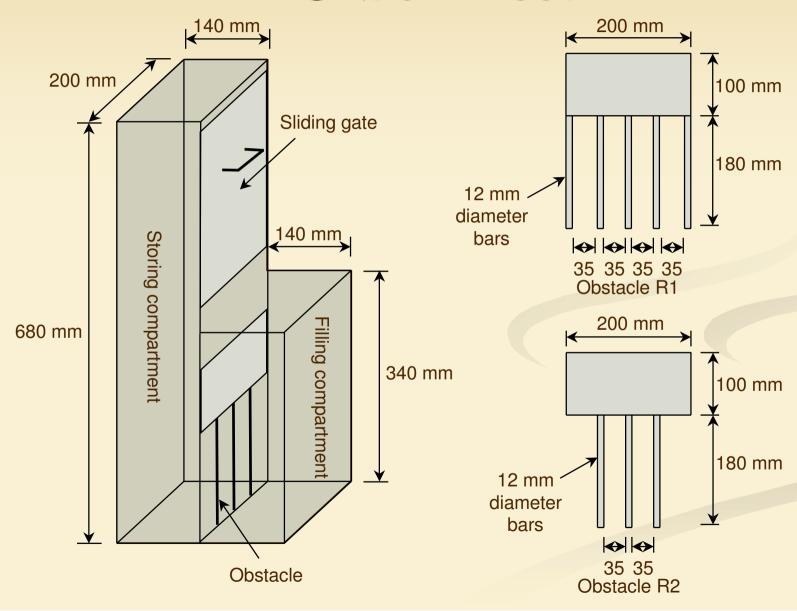


Slump Flow Test

- Slump flow grades
 - SF1: Flow 550 650 mm
 - SF2: Flow 650 750 mm
 - SF3: Flow 750 850 mm
- Recommendation
 - Flow ≥ 650 mm to ensure full self-consolidation


V-funnel Test

- Apparatus
 - V-funnel
- Procedure
 - Fill the concrete gently into the V-funnel until it reaches the top edge
 - Open the bottom lid to discharge the concrete



V-funnel Test

- Measured value
 - V-funnel time: The period between the time when the bottom lid is opened and the time that light can be seen through the orifice
- Acceptance criteria
 - V-funnel time ≤ 15 seconds

U-box Test

U-box Test

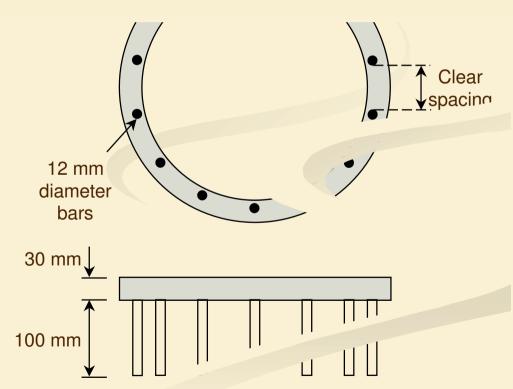
- Apparatus
 - U-box
- Procedure
 - Close the sliding gate separating the storing compartment and filling compartment
 - Fill the concrete gently into the storing compartment
 - Open the sliding gate sharply to allow concrete to flow to the filling compartment
- Measured value
 - Filling height: the height of concrete filled in the filling compartment

U-box Test

Ranks of SCC for U-box test

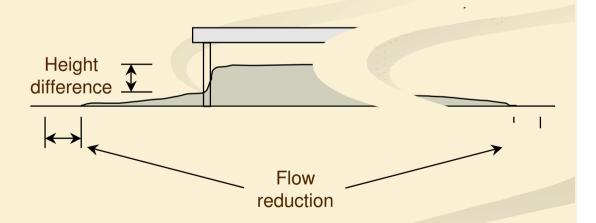
Rank 1	Minimum clearance of 35 to 60 mm	Obstacle R1
Rank 2	Minimum clearance of 60 to 200 mm	Obstacle R2
Rank 3	Minimum clearance of larger than 200 mm	NO Oh

- Acceptance criteria
 - Filling height \geq 300 mm regardless of obstacle arrangement


J-ring Test

Apparatus

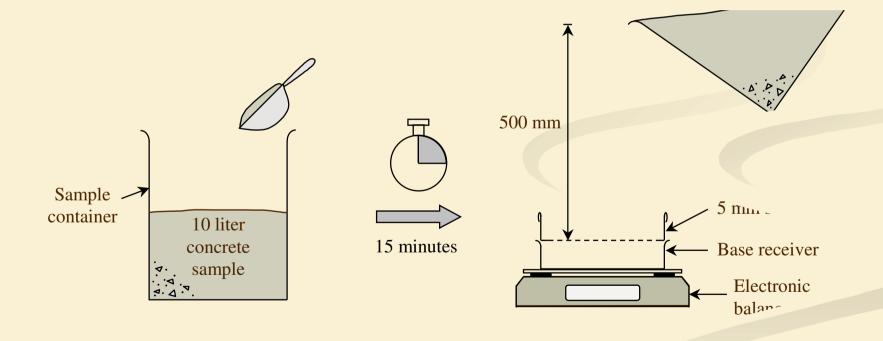
- J-ring
- Slump cone
- Flat, smooth and level steel base plate


Procedure

- J-ring is placed outside the slump cone concentrically
- Fill the concrete and lift the slump cone as in the slump flow test

J-ring Test

- Measured values
 - Flow reduction
 - Height difference
- Acceptance criteria
 - Flow reduction
 - **≦100 mm**
 - Height difference
 - \leq 20 mm


Sintib nom

Sieve Segregation Test

- Two versions of sieve segregation test
 - Without allowing aggregate sedimentation to take place
 - Allowing aggregate sedimentation to take place
- Apparatus
 - 300 mm diameter sample container
 - 5 mm aperture test sieve
 - Base receiver
 - Electronic balance
 - Stop watch

Sieve Segregation Test

Procedure

Sieve Segregation Test

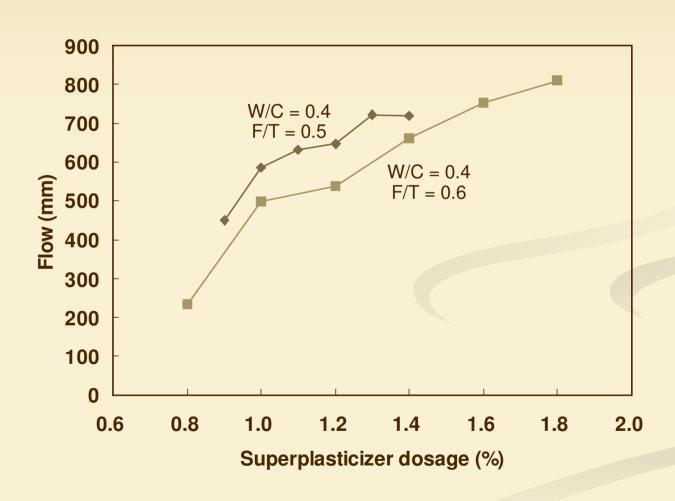
- Measured value
 - Segregation index

Segregatio n index =
$$\frac{W_p}{W_c} \times 100\%$$

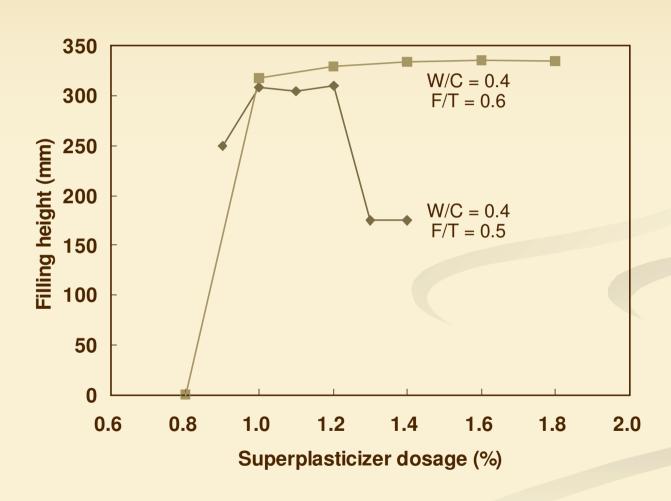
 W_p = Weight of material collected in the base receiver

 W_c = Weight of concrete poured onto the sieve

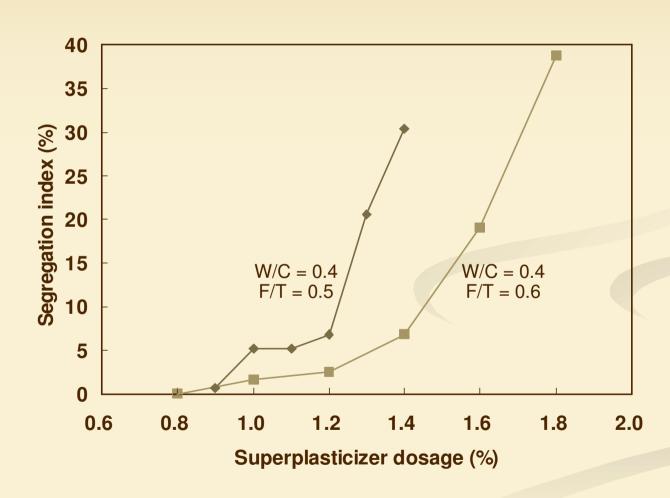
Classification and acceptance criteria


Segregation stability grade	Confinement gap width	Allowable segregation index
SS1	≧80mm	≦ 20%
SS2	< 80 mm	≦ 15%

Classification of SCC


Toot mothod	Performance criteria		
Test method	High-flow SCC	Super-high-flow SCC	
Slump flow test	Flow ≥ 650 mm	Flow ≧ 750 mm	
V-funnel test	V-funnel time ≤ 15 sec	V-funnel time ≦ 8 sec	
U-box test	Filling height \geq 300 mm (measured using obstacle R2)	Filling height ≥ 300 mm (measured using obstacle R1)	
J-ring test	Reduction in flow ≤ 100 mm Height difference ≤ 20 mm (measured using J-ring with bar clearance of 60 mm)	Reduction in flow ≤ 100 mm Height difference ≤ 20 mm (measured using J-ring with bar clearance of 40 mm)	
Sieve segregation test	Segregation index ≤ 20%	Segregation index ≤ 15%	

Laboratory Study in HKU


Slump Flow Test Results

U-box Test Results

Sieve Segregation Test Results

Conclusions

- SCC is more than a high-workability concrete
 - Filling ability
 - Passing ability
 - Segregation stability
- Test methods for SCC and corresponding acceptance criteria are presented
- Two grades of SCC are proposed
 - High-flow SCC
 - Super-high-flow SCC
- Government, concrete practitioners and academic should work together to develop SCC

Thank You