

NEW GOAL FOR SERVICE LIFE OF FUTURE BRIDGES For Major Bridges — 100 years* Minor Bridges — 75 years* * without a major repair.

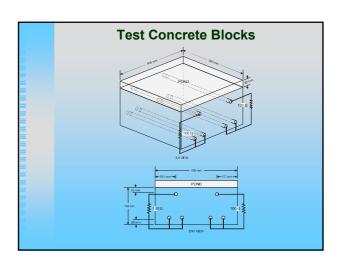
DESIGN OPTIONS FOR PREVENTING CORROSION IN FUTURE BRIDGES Use of Low-Permeability Concrete. Provision of Sufficient Concrete Cover for the Reinforcement. Use of Corrosion Inhibitors. Use of Corrosion-Resistant Bars.

BAR REQUIREMENTS: High Tolerance for Chloride. Easy to Fabricate at Construction Sites. Durable Enough to Withstand Mishandlings During Transport and Construction. Affordable.

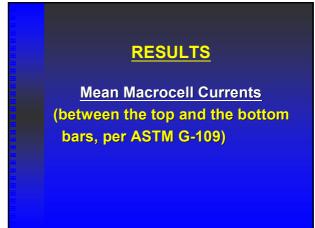
Assessment of the Resistance of the Clad Bars to Chloride-Induced Corrosion in Concrete:

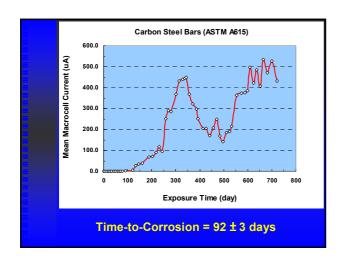
- 1. <u>Embedded</u> the clad <u>bars in</u> <u>concrete blocks</u> (almost similar to ASTM G109).
- 2. Weekly exposed the blocks to 3 days of ponding with a NaCl solution and 4 days of drying.

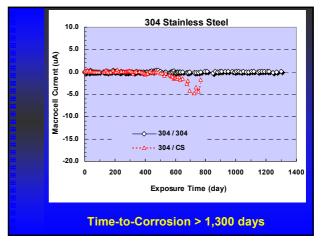
Assessment: (Continued)

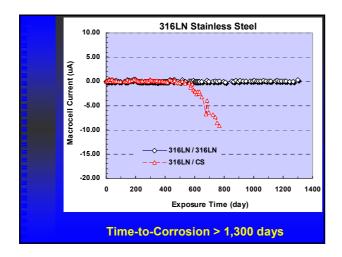

- 3. Weekly monitored the corrosion status of each bar to pinpoint its time-to-corrosion (T_C)
- 4. Estimated the chloride concentration in the concrete at each $T_{\rm CL}$
- 5. For comparison,

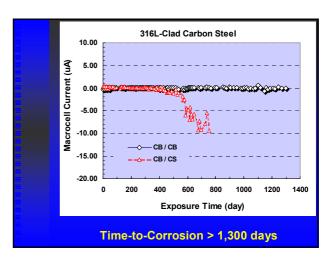
The Following Bars Were Also Tested:

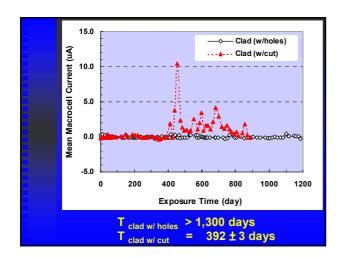

- Carbon Steel
- 304 Austenitic Stainless Steel
- 316LN Austenitic Stainless Steel

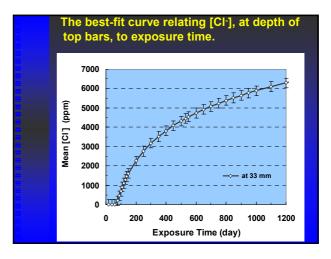

	MATRIX F BLOCKS	OR THE TE	ST CONCR	ETE
		Bar Combination		No. of
	Bar	Тор	Bottom	Blocks
С	arbon Steel	Carbon Steel	Carbon Steel	8
П	304	304	304	4
		304	Carbon Steel	4
П	316LN	316LN	316LN	4
		316LN	Carbon Steel	4

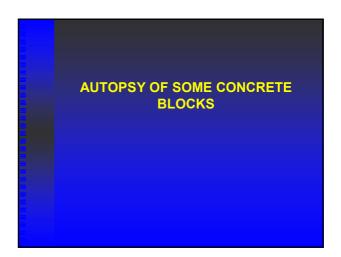

MATRIX FOR THE TEST CONCRETE BLOCKS (Contd.) Bar Combination No. of **Bottom Blocks** Bar Top Clad Clad Clad 4 Clad Carbon Steel 4 Clad (w/ 3-mm Clad (w/3-Clad 4 holes) mm holes) Clad (w/ Clad (w/ Clad 4 25-mm cut) 25-mm cut)

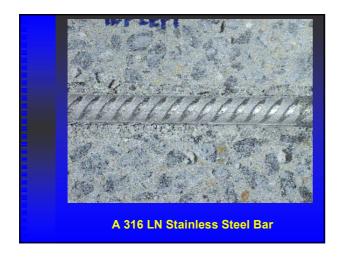


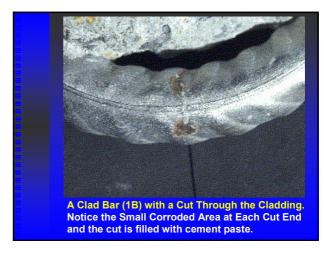


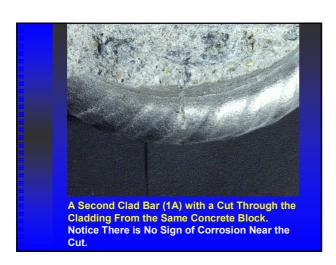


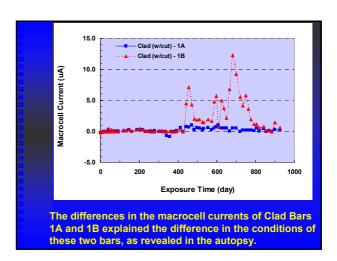







For The Different Bars				
Bar	[CL ⁻] _{corr,} (ppm)	Ratio		
Carbon Steel	430 - 580	1.0		
340	> 6,470*	> 11.2 - 14.2		
316LN	> 6,470*	> 11.2 - 14.2		
316L-Clad	> 6,470*	> 11.2 - 14.		
316L-Clad (w/holes)	> 6,470*	> 11.2 - 14.2		
316L-Clad (w/cut)	3,750 - 3,790	6.5 - 8.8		





CONCLUSIONS

- During the 1,300 days of weekly salt exposure, the clad bars exhibited the same degree of tolerance to Clas the solid 304 and 316LN austenitic stainless steel bars.
- These bars were shown to have Cltolerances that are at least 11.2 to 14.2 times that of carbon steel bars.

- It appeared that defects in the cladding may, to some extent, affect the corrosion resistance of the clad bars.
- The extent is dependent on the type of defect and size.

Thank you very much.