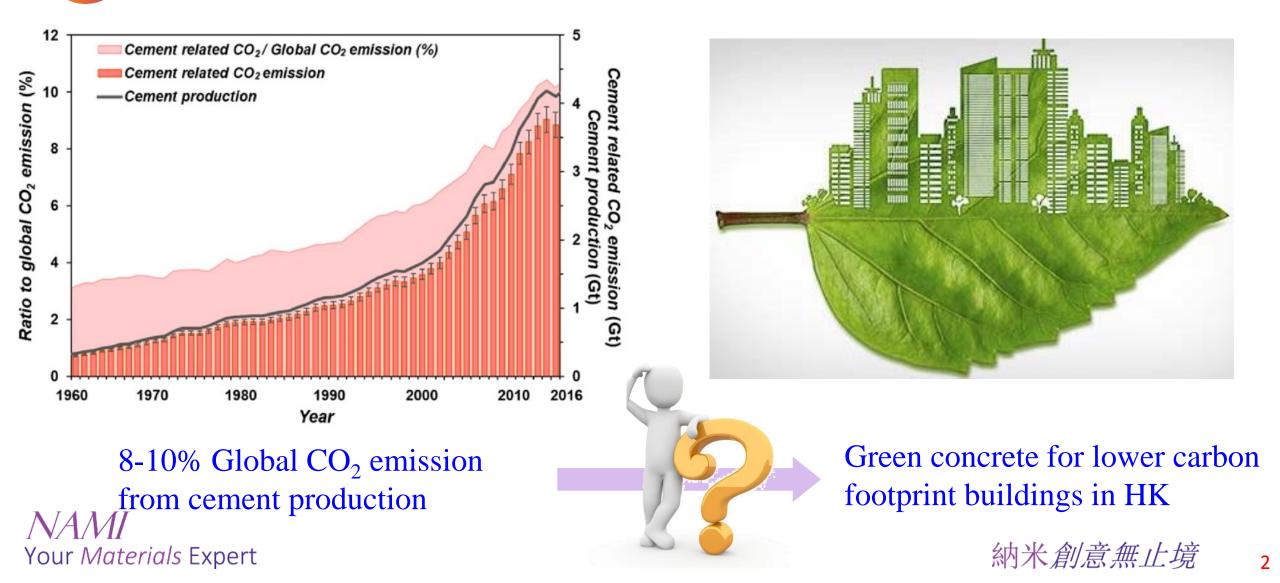


GGBS-based Low Carbon Concrete Technologies for the Construction Industries of Hong Kong

Dr. Garrison CK CHAU Ph.D.


Technical Manager, Nano and Advanced Materials Institute

Nov 2022

NAMI Your Materials Expert

Partial OPC Replacement by GGBS

GGBS: A green cementitious materials

Raw Combustion gases	Environmental issue	Measured as	Cement	GGBS
Raw materials ases	Climate change	CO ₂ equivalent	0.95 tonne	0.066 <i>tonne</i>
Working platform Coke layers Iron ore	Energy use	Primary energy	5000 Мј	1300 <i>Mj</i>
	Mineral Extraction	Weight of ores	1.5 tonne	0
	Water disposal	Weight of waste to be disposed	0.02 tonne	0
(SLAG MELT) Iron melt	BRE Ecopoint Score	Eco-point	4.6	0.47

- ASTM C989: Standard Specification for Slag Cement for Use in Concrete and Mortars
- JIS A 6206 : 1997 Ground Granulated Blast-furnace Slag for Concrete Your Materials Expert
- □ BS EN 15167-1/2: Ground Granulated Blast Furnace Slag for use in concrete, mortar and grout
 - GB/T 18046-2017 Ground granulated blast furnace slag used for cement, mortar and concrete

Oversea applications of GGBS- concrete

Region	Projects & Usage	GGBS ratio (OPC replacement)	LAFARGE
USA	Central Park Tower (76,000 m ³ concrete, 62-96 MPa)	30%-70% (Depending on application)	
UK	Gatwick Airport station (3000 m ³ concrete)	70%	Hanson
India	Bengaluru International Airport (50,000 t GGBS, for the runway)	40%	Cement
China	The Three Gorges Dam (28 million m ³) Cross-bay Bridge of Hangzhou Bay (35 km)	20-70%	CONCH 海螺水泥
Singapore	TUAS Undersea Cable Tunnel (23,520 t GGBS)	70%	ENGRO
Current Applicatio Sweetspo GGBS Con	t of life	gh performance, long	BUILDING SUSTAINABILITY GGBS cement producer 納米創意無止境 4

Application Examples of GGBS-concrete in HK

Project	Usage	GGBS ratio (OPC replacement)
Public Housing	15,000 units/yr Precast concrete facades	35%
Tsing Ma Bridge	The towers	65%
Stonecutters Island Bridge	Pile caps	60%
MTRC Infrastructures	Pile caps & piles in a landfill site	50-75%

Recommended specification for reinforced concrete in the marine environment has been endorsed by SCCT in 2000

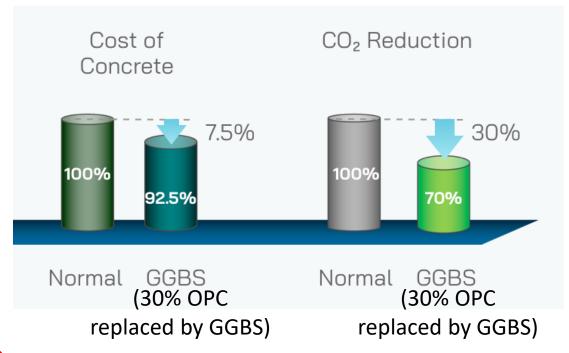
Yet, wider applications are urging to further promote the use of GGBS concrete for lowcarbon buildings *I* V/ V/VII

Your Materials Expert

Pros & Cons of GGBS Concrete

Advantages in performance

- Improved workability with good pumpable and compaction characteristics
- Low heat of hydration


.

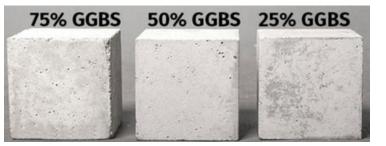
Your *Materials* Expert

- High resistance to chloride penetration
- High resistance to sulphate attack
- Increased resistance to fire attack

Disadvantages in performance

- Prolonged setting time at fresh stage
- Bleeding in the fresh state
- Lower early strength at initial hardening stage

Advantages in economy and environment


Doubts from the Industries on Using GGBSbased Low-carbon Concrete

- Low early strength affecting demolding time?
- A "powdery" surface, and lower bonding strength?
- Bonding strength between existing OPC based normal concrete and new high volume GGBS concrete
- A concrete with lighter/different color, long term strength development
- Bleeding problem in the fresh state, so a specific admixture is to be developed

NAMI Your Materials Expert

Our Strategy – To Provide a Holistic Study for the Industries

High volume GGBS GGBS quality control

Low Carbon

Satisfied

concrete

durability

Lower bulk density Lower weight More pore space

Higher bulk density

Higher weight Less pore space

NAMI Your Materials Expert Mix and packing design for hardened properties


Concrete

Admixture for fresh properties control

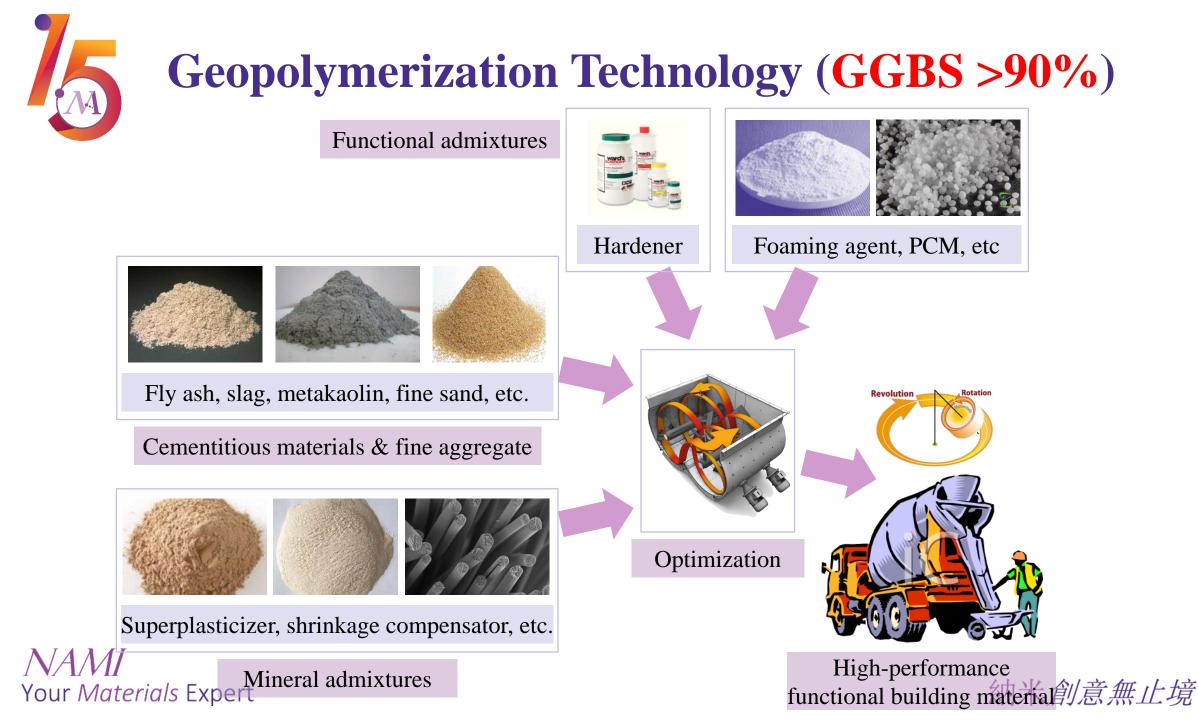
7 Must-Use Concrete Admixtures Set Retarding Air Entrainment Water Reducing Superplasticizers Corrosion Inhibiting

NAMI's Expertise in GGBS System

Geopolymerization

Dry-Mixed Repair Mortar

Sprayable Repair Mortar



Precast Concrete

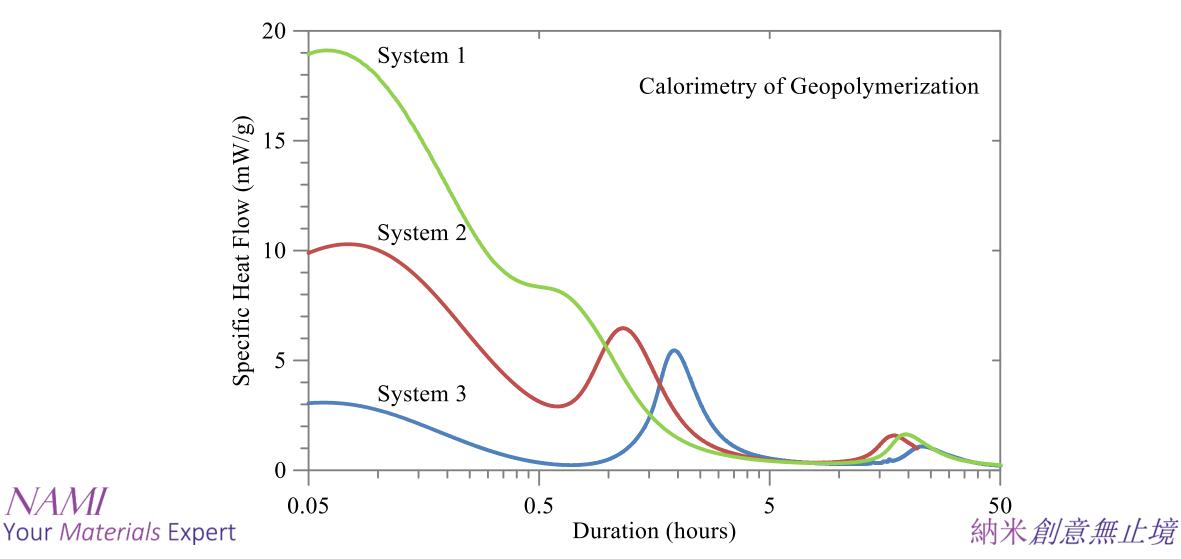
Your Materials Expert

er
A STATE

Others:	

Adjustable Performance

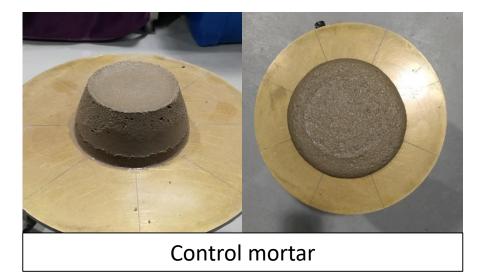
- Setting time & one-day strength optimized for different application scenarios
- One-day strength kept at ~20 MPa, setting time regulated from 30~180 min
- Setting time kept at ~90 min, one-day strength regulated from 20~40MPa



NAM

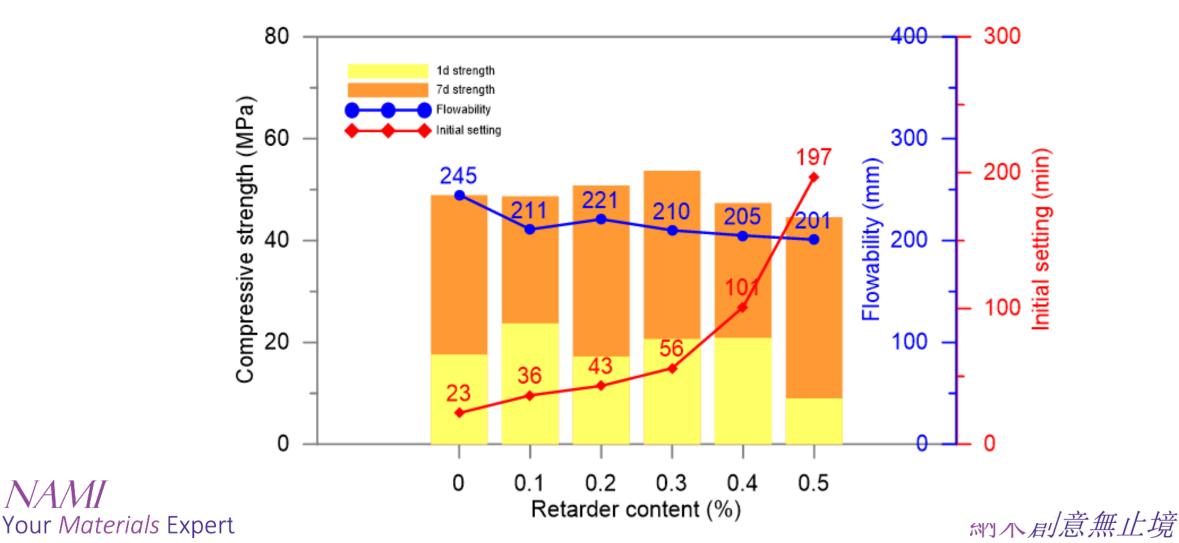
Controlling setting & strength development

Admixtures for the GGBS System


- The three major performance areas in concern
 - Water usage reduction (strength & durability)
 - Workability enhancement (application scenarios)
 - Drying shrinkage minimization (consistency)

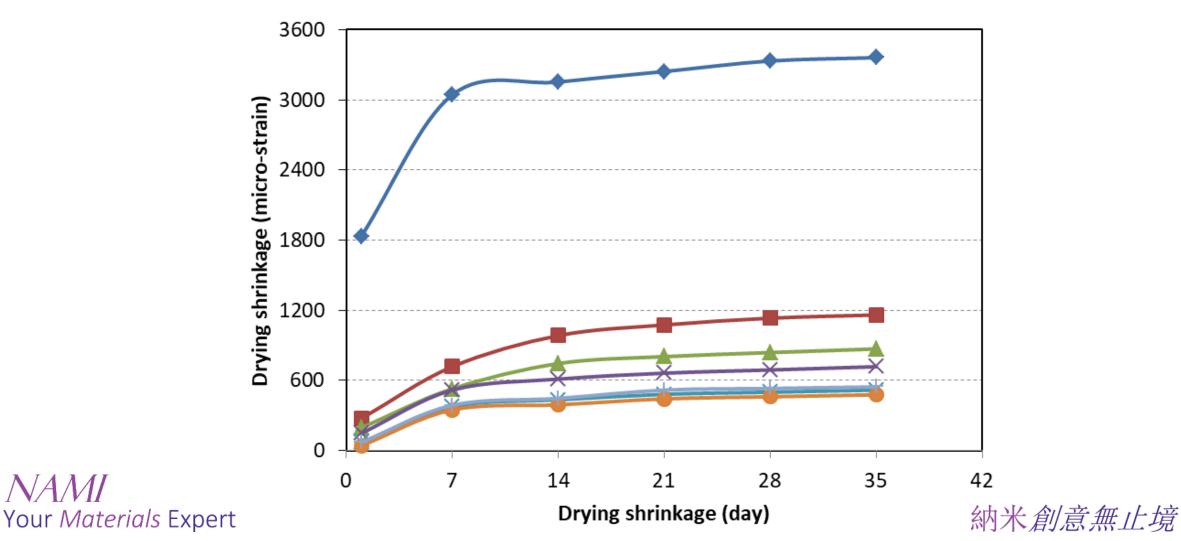
Water Reduction

• Water reduction in geopolymer mortar


With water reducer

	Specimen	Setting (min)	Flowability (mm)	Strength @1-d (MPa)
	Control mortar	50	162	5.8
IAMI	With water reducer	60	202	24.0
our Materia	uls Expert			納米創意為

NAM


• Retarder effects in geopolymer paste

• Linear shrinkage measurement

NAMI

- Enhanced performance of OPC system blended with high volume of GGBS
- Raw materials control
- Geopolymer cement, mortar & concrete applications
- Precast geopolymer products
- Applications in thermal insulation & backfilling

Dry-Mixed Repair Mortar

- OPC-free geopolymeric repair mortar
 - Setting time longer than 90 min
 - Wet density is ~2.0 g/cm³
 - Compressive strength at 1-day > 20 MPa
 - Modulus of elasticity > 20 GPa
 - Weight loss (4 weeks in 5% H_2SO_4) < 5%
 - Chloride ion penetrability low
 - Drying shrinkage < 0.06%

Application Trials of Patch Repair


NAMI Your Materials Expert

Partial Acid Submersion Test

• To imitate & accelerate the dynamic corrosive acidic environment inside a sewage pipe, with a 5% sulphuric solution of pH~0.5

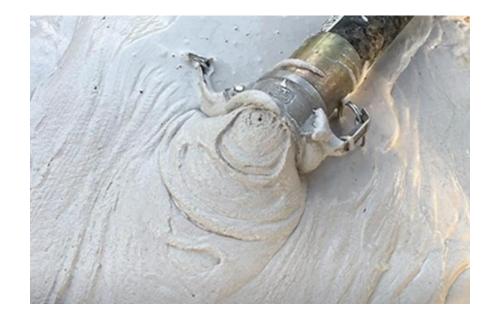
NAMI Your Materials Expert

Excellent Acid Resistance

 Dynamic partial submersion in 5% sulphuric solution (pH~0.5) for 14 days

NAMI Your Materials Expert

Weight loss over 6%


Not measureable

Sprayable Repair Mortar

NAMI

Adjustment for suitable rheology

納米創意無止境

Trials of Sewerage Repair

NAMI Your Materials Expert

Foamed Geopolymer

- The engineered geopolymeric base prepared
- Foaming agent such as aluminum powder, CaH₂ or H₂O₂ etc. then added & well mixed
- A cellular structure formed within over time



Excellent for backfilling operations & thermal insulation works

NAMI Your Materials Expert

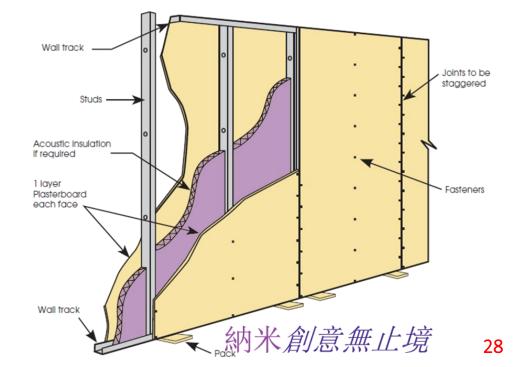
Wide Range of Applications

- Standard ultra-lightweight insulation core material (JC/T-2200)
 - Density < 180 kg/m³
 - Compressive strength > 0.3 MPa
 - Thermal conductivity < 0.055 W/mK
- Geopolymeric blocks
 - Density 500~1,500 kg/m³
 - Strength 3.5~35 MPa

Up-Scale Production Trial

 Proper mixer & mixing procedures facilitating a homogeneous paste is critical

NAMI


Installation of Dry Wall

Fire Resistance Test

- For non-loadbearing wall to BS EN 1364-1
 - Ultra-lightweight thermal panel
 - Total 50 pcs each of 50 \times 300 \times 600 mm
 - Two layers of surface boards on both sides
 - Wall area of 10 m^2
 - Total wall thickness of about 85 mm
 - Total wall density of only 500 kg/m³

NAMI Your Materials Expert

FRR of 2-Hr Achieved

NAMI Your Materials Expert

Your *Materials* Expert

- Apart from some iconic examples of using GGBS concrete locally, ultra-high content of GGBS (>90%) has been researched & commercialized for drywall and repair mortar applications.
- Ready-mix, GGBS-based concrete can effectively reduce the carbon footprint of the concrete industry. Yet, we need a platform connecting the industries of the whole ecosystem to work together and demonstrate the viability of GGBS concrete for wide applications in HK.
- Focused application scenario(s) should also be identified to demonstrate the practicality & advantages of high contents GGBS concrete with reasonable performance and consistent supply by local concrete plants. **Basic** Creep Water Drying Creep

Permeability

This holistic study should be pursued as soon as possible!

Please Join Us to Explore Together

Ŕ

Ĥ

境

长創意無山

NAMI Your Materials Expert