

Application of Engineered Cementitious Composites (ECC) in Precast Ultrathin White-Topping (PUWT)

- A Field Demonstration on Jurong Island, Singapore

Jote Char

Jishen Qiu 仇霽申 Assistant Professor Dept. of Civil Engineering, HKUST

My Research: New Construction Materials

Jishen Qiu, PhD. 2016 PhD. Nanyang Technological University 2019-Now Assistant Professor HKUST

110

Today's topic

Project Roadmap (2-3 years)

Motivation: Road Surface Damage

Road surface in Singapore

- Year-round hot and humid climate
- Mostly asphalt, susceptible to surface rutting and cracking
- Frequent maintenance and repair

Asphalt road surface cracking and rutting Junction of Semi Rd. and Adam Rd., Singapore Credit: Strait Times

Problem Identification

Illustration of Flexible Pavement Credit: Pavement Interactive

- Asphalt surface of 150-200 mm thick
- Sensitive to heavy vehicles (bus and lorries)
- Distresses only in the top inches
- Base and subbase remain mechanically sound

Traditional Solutions & Their Drawbacks

1 Mill off full depth & repave with asphalt

- Overnight construction
- Same problem occurs quickly

2 Mill off the distressed inches & white-topping (concrete)

- Enhanced mechanical strength
- Multiple days of road closure

3 Mill off & precast concrete slab (maturing technology)

- Fast construction & enhanced strength
- Full-depth R/C slab: complicated manufacturing
- Full-depth milling-off
- Slab-base and inter-slab joint design

Review: Prefabricated Concrete Pavement

• Reinforcement is mandatory

600

500

400

300

200 100 0

ESALs (millions)

Precast

- Complicated joint design and manufacture
- Prefabrication on site (not plausible in Singapore)

Durability of precast vs. cast-in-place concrete under wheel-pressure test Kohler et al. 2008

Complicate Joint Design: dowel bar + dent grouting (left); pre-stressing the joint (right) Credit Fort Miller Inc. (left) & Chang et al. 2004 (right)

Limit by the brittle nature of concrete

7

Project Roadmap

ECC and Its Basic Properties

Common ingredient of ECC: cement, fly ash, ultrafine silica sand, polymer fiber (no aggregates)

ECC – "Bendable Concrete"

10

Fatigue-induced Damage in ECC

- Premature failure losing the signature multiple cracking and ductility
- Attributed to the fiber-bridging deterioration under cyclic loads

ECC under different cyclic loading Qian et al. 2012

Micromechanics for ECC Fatigue

Single Micro-fiber Pullout Test

- First to conduct this test (a micro fiber cyclically pulled out from cement matrix)
- Cyclically loaded vs. Pristine (as control)
- Effect of loading magnitude, number of load cycles, and embedment angles are studied

Single-fiber Pullout Specimen, PVA fiber ϕ =40 μ m

Qiu et al. 2016, Fatigue-induced deterioration of the interface between micro-polyvinyl alcohol (PVA) fiber and cement matrix. *Cement and Concrete Research* Qiu et al. 2017, Fatigue-induced in-situ strength deterioration of micro-polyvinyl alcohol (PVA) fiber in cement matrix. *Cement and Concrete Composites*

Findings from Our Lab Study

Monotonic Loading → Cyclic Loading

- Polymer fiber debonds from cement matrix at a significantly lower load level
- The loose fiber abraded by the reciprocate movement and gets weaker
- The fatigue-induced fiber-bridging loss can be quantified

Qiu et al. 2016, A micromechanics-based fatigue dependent fiber-bridging constitutive model. *Cement and Concrete Research* Qiu et al. 2018, Effect of self-healing on fatigue of engineered cementitious composites (ECC). *Cement and Concrete Composites*

Design Fatigue-resistance ECC

Our Approach: Self-healing of ECC \rightarrow Mechanical Recovery \rightarrow Longer Fatigue Life

ECC S-N (fatigue life-load) curve: experimental data vs our modeling

Effect of healing on ECC fatigue life

Qiu et al. 2017, Micromechanics-based investigation of fatigue deterioration of engineered cementitious composite (ECC). Cement and Concrete Research

Enhance the Healing-induced Recovery

- The mechanical recovery is from the fiber-cement interfacial healing
- Fiber surface coating enhances this interfacial healing (**on-going research**)

One of the nano-scale coating recently developed at HKUST

Qiu et al. 2019 Autogenous healing of interface between fiber and hydraulic cement matrix. Cement and Concrete Research

Precast Ultrathin White-topping

Structural Design Considerations

• Shear-key

Inter-slab joint

• The base guarantee the load-transfer

Low skid resistance of ECC (no coarse aggregate)

- Corundum added into ECC mix design
- Expose by steel-wire brushing

Project Roadmap

Challenges in Large-Scale ECC Mixing

Factors on fiber dispersion

- Rheological the fresh cement
- Mixer type and power

PVA fiber received in bundles, needs to be separate by shear flow of fresh cement Credit: Nycon

Gravity drum mixer (1000 L)

- No revolution, no rotation
- Unworkable balling

Twin shaft mixer (3000 L)

- Revolution, no rotation
- Unknown fiber dispersion

Planetary (500 L-3000 L)

- **Revolution & rotation**
- Good fiber dispersion

20

Tuning the Factors of Mixing

Final Design of the Mixing

Wheel Test

- Vehicle weight (cyclic) + elevated temperature
- Four sessions:
 10 tons,
 10 tons, 40°C
 10 tons + braking force
 10 tons + braking force, 40 °C

100000 cycles 50000 cycles 1000 cycles 500 cycles

CREATE

Verified Structural/Material Design

30

No visible damage at the cored joint

Project Roadmap

ECC Slab Manufacturing (1)

ECC Slab Manufacturing (2)

Video Clips

Flipping ECC Slab

Casting ECC slab

Field Demonstration of ECC-PUTW

Site Selection Criteria

- Regular heavy vehicle
- Braking force
- No shadow

Construction Plan

- 5 large slabs (3.4 x 2.4 m)
- 4 small slabs (2.4 x 1.7 m)
- 1 with minor reinforcement

Selected construction site: a bus stop on Jurong Island (J6)

ECC Slabs Installation (1)

ECC Slabs Installation (2)

Install monitoring devices

Adjustment slab position

Grouting and sealing

Opening to Traffic & Monitoring

The shelter and cabinet

200 µm

Healed cracks on-site

The new bus stop opened to traffic in July 2018, after a 2-day construction

Bottom strain at the corner of a large slab (DMS 6)

Temperature-induced strain in 24 hours Heavy truck-induced strain The first cracking of ECC 20 micron 40 micron 200 micron 32

Media Coverage

Channel News Asia

33

What We Learned

- ECC is suitable for prefabricating thin structural members of large dimensions
- Know-hows on the quality control of large-scale ECC mixing, esp. in twin-shaft mixer
- Construction method matters
- PUTW-ECC is a promising option to repair/upgrade road surface with high traffic

Thanks for your attentions

ECC vs. Fiber-UHPC

