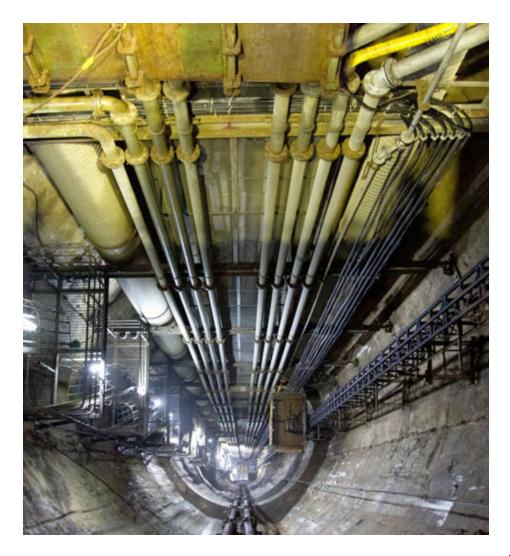


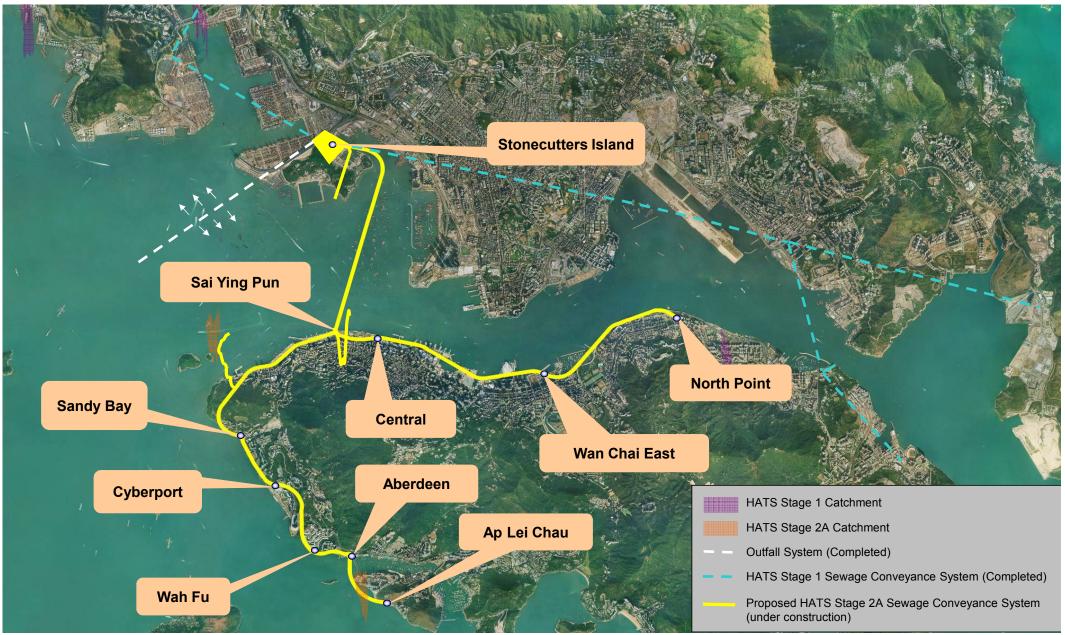
Outline

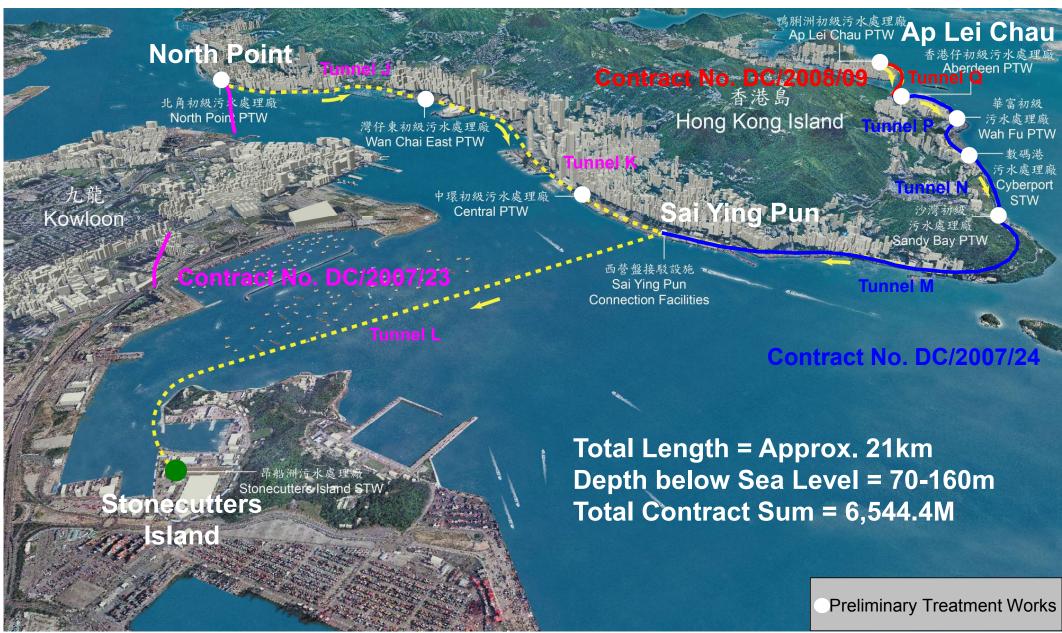
- 1st part by Mr. K Y Chan
 - Project Introduction & Background
 - Consideration of choosing long-distance concrete pumping
- 2nd part by Mr. Nick Gibbs on
 - Project delivery including logistics, trial pours, concrete distribution system, high performance concrete mix design etc.

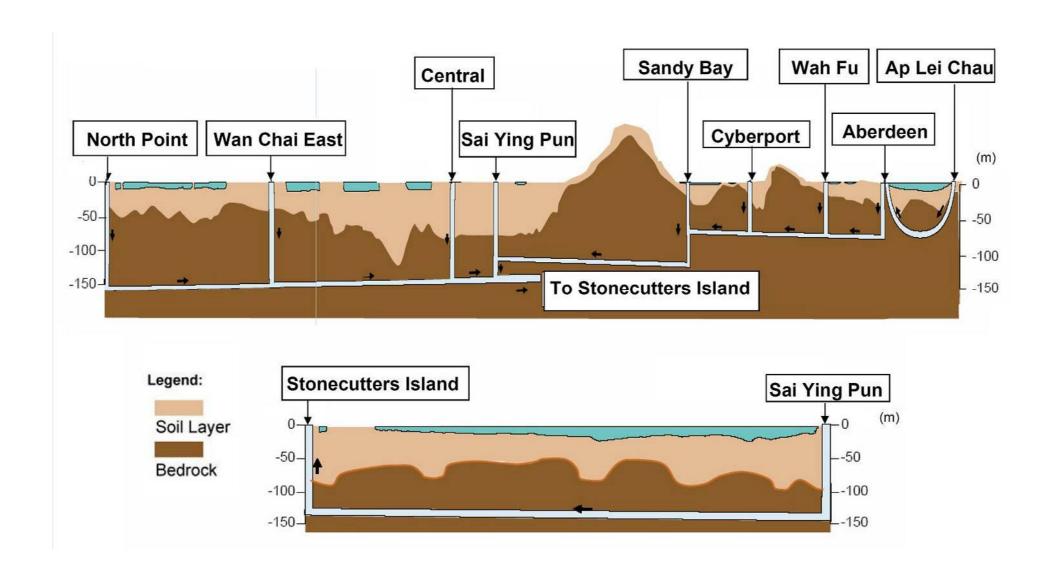




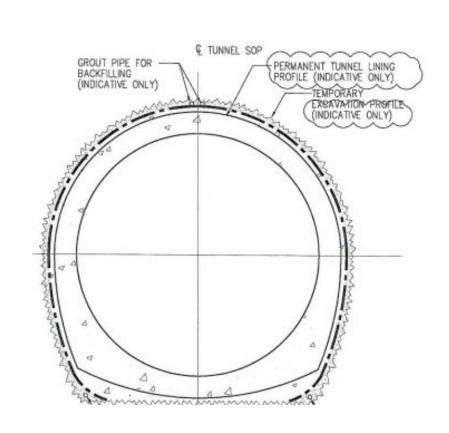
Harbour Area Treatment Scheme (HATS) Stage 2A Sewage Conveyance System (SCS)




Harbour Area Treatment Scheme – Stages 1 and 2A



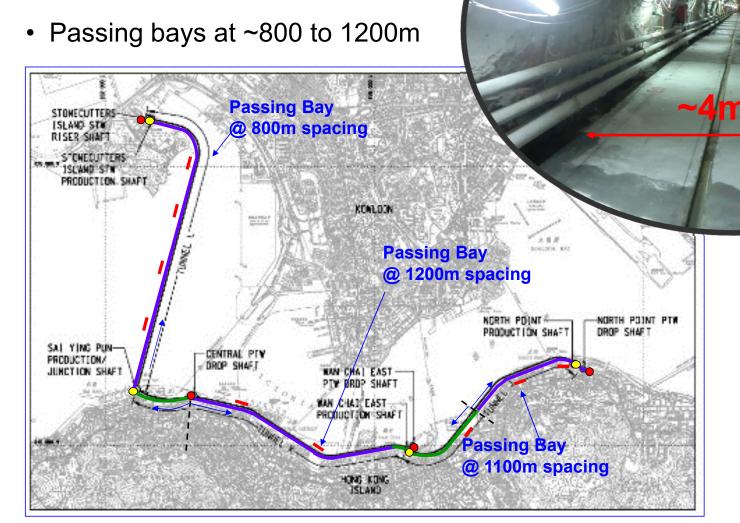
HATS Stage 2A Sewage Conveyance System - Alignment



Typical Cross Section

FOR SOP OF TUNNEL PERMANENT TUNNEL LINING -OVAL-SHAPED SEWAGE CONVEYANCE SYSTEM F4 FINISHES 2400 1200 2000 1100 EXCAVATED SURFACE (TO BE DESIGNED BY CONTRACTOR) COASTAL LEG INLAND LEG CROSS-SECTION CROSS-SECTION $AREA=1.73m^2$ AREA=2.26m²

Tunnel L (3000 diameter) <u>Tunnel K</u> (1200x2400 + 1100x2000)

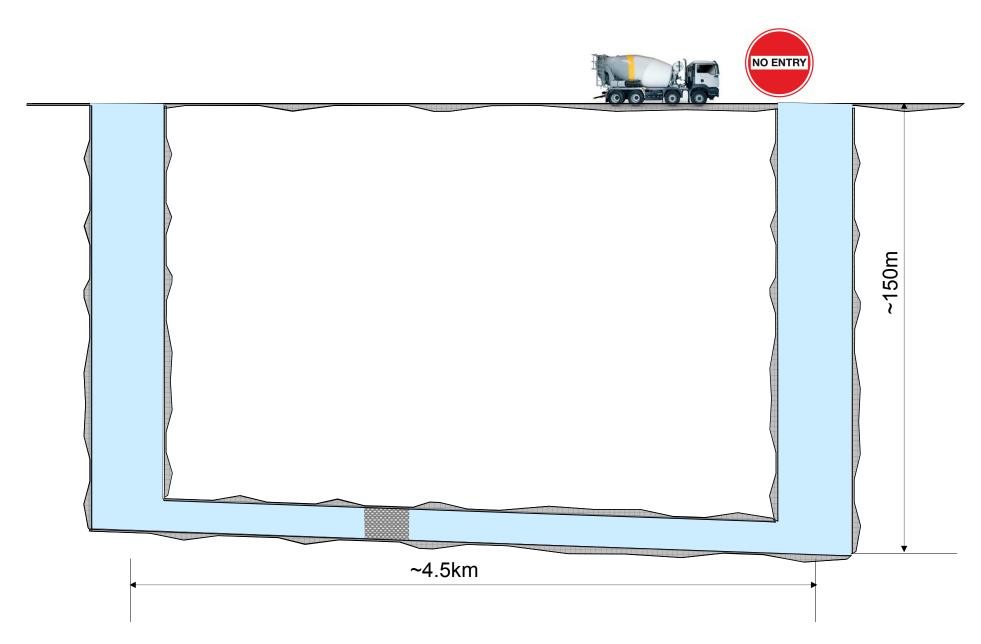


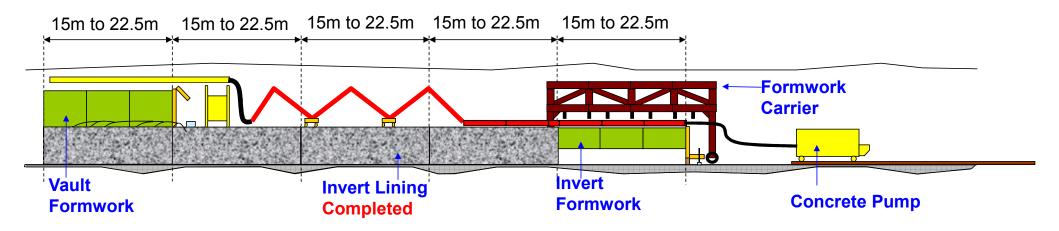
Access constraints

Access via deep shafts (>150m)

Small diameter (~4m)

One way traffic

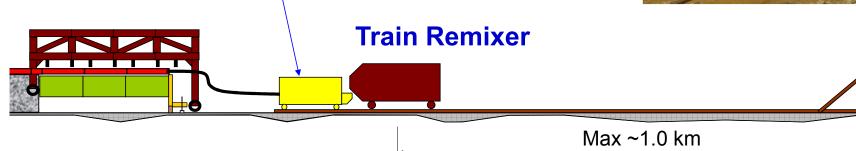




Formwork Concreting Operation

Scissor pipes

Formwork Carrier with Invert Formwork



Delivery by Train Remixer

Train speed

Average Travelling Time (round trip)

Average Time to discharge

Capacity of each train remixer

Concreting rate

= 6km/hr

= 10min

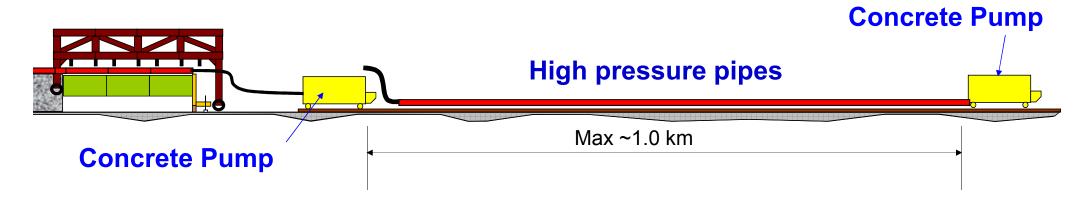
= 15min

 $= 7 \text{ m}^3$

 $= 16.8 \,\mathrm{m}^3/\mathrm{hr}$

Means to enhance concreting rate

Method	Concerns
Increase train speed	Risk of de-railing, safety concerns
Twin track	Time and cost for increased excavation and backfilling
Closer passing bays	Time and cost for increased excavation and backfilling


Delivery by LDPC (Long Distance Pumping of Concrete)

Concrete Delivery by LDPC

Concrete Pump at Formwork

Concrete Pump at Shaft Bottom

Discharge Rate of LDPC

Pipe diameter = 150mm

Area = $0.018 \,\mathrm{m}^2$

velocity = 0.5 m/sec

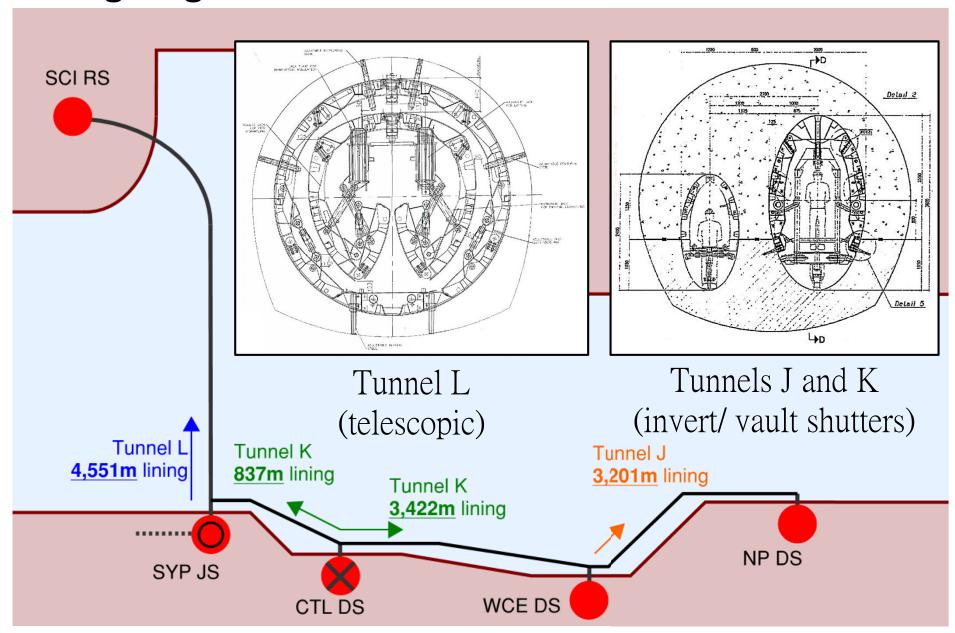
Pumping rate = $31.8 \text{m}^3/\text{hr}$

(>16.8 m³/hr by train remixer)

Time to travel 1 km = 33min

Compare LDPC with Train Remixer

Advantages	LDPC	Train Remixer			
Higher concrete delivery rate	~32m³/hr	~17m³/h			
Occupy less space	150mm diameter pipe	Train remixers			
Steady supply of concrete at face	Continuous	Break after discharge each train			
Potential Problems / Limitations					
Longer travelling time	0.5 m/sec = 1.8 km/hr	6 km/hr			
Risk of pipe blockage	Yes	No			
Limited distance	Up to 1.2 km in HATS experience	Up to 4.5 km in HATS			

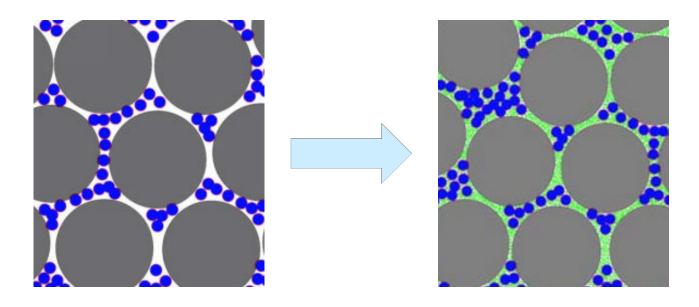


Category	GS (2006) - Marine Concrete (Grade 45/20D)	DSD HATS2A (Plain marine concrete Grade 45/20D)
Concrete mix		
	(i) Min grade 45 MPa (ii) Max 0.38 w/c ration (iii) 375-450 kg/m3 cementitio condensed silica fume	us materials with 25-40% PFA and 5-10%
	PC, SRPC, PFAC, PBFC, CSF	Sulphate Resisting Portland Cement
Concrete Performance		
Temperature	Placing temp < 30°C	(i) Placing temp < 32°C(ii) Peak ≤ 70°C(iii) Max difference ≤ 20°C
Strength	same as normal concrete	Any consecutive 40 results of 28d cube strength: - Coefficient of variation ≤ 8% - Average strength ≥ Grade + 2x standard deviation
Durability	not specified	 28d AASHTO chloride diffusion (6 hour hour test) ≤ 1,000 coulumbs 28d water sorptivity ≤ 0.07 mm/min^{0.5}

Lining Logistics

Lining Logistics

				1 hour		2 hours		3 hours		4 hours		5 hours		6 hours
Activity	Duration	30 mins												
Mixing at barching plant and transport to site	1 hr													
Queuing at site	0.25 hrs													
Vertical discharge via slickline	0.25 hrs													
Convey to face by train mixer / pump	0.5 hrs													
Placed in final position (earliest / latest)	0.5 - 2.5 hrs													
Contingency	1.5 hrs													


Slump ≥ 200mm at 6 hours after mixing with water Early strength ≥ 1 Mpa at 6 hours for Tunnels J and K Early strength ≥ 3 Mpa at 8 hours for Tunnel L

- Tunnels J and K shutter length 15m
- Tunnel L shutter length 60m
- Careful balance between appropriate admixture dosing and operational control onsite (truck queuing, pump line static times)

Concrete Design Mix

- Particle packing optimised through replacement of cementitious material with inert fines
- Water also reduced and superplasticisers added to maintain workability
- Result is good workability, high performance concrete that satisfies durability requirements

Concrete Design Mix

ID	Type	Designation	Workability	w/cm	CSF content	PFA content	CM (kg/m3)	Fine (kg/m3)	Coarse (kg/m3)	Admixtures (L/m3)
1	Self-	15/10D	680mm SF	0.42	0%	58%	440	820	830	6
2	compacting	45/10D	700mm SF	0.37	6%	31%	435	780	950	8
3		45/20D		0.38	6%	31%	435	730	1000	11
4	High-	45/20D		0.37	6%	31%	435	750	1000	11
5		60/20D	200mm slump	0.35	6%	30%	450	765	1000	8
6	performance	60/20D		0.35	6%	30%	450	765	1000	8
7		80/20D		0.31	5%	25%	450	770	1020	11
8	Very early	45/20D	225mm slump	0.38	6%	31%	435	780	950	17
9	strength	60/20D	ZZSIIIII SIUIIIP	0.34	6%	28%	450	810	940	17

CSF Condenses Silica Fume 10 microns
PFA Pulverised Fly Ash 50-100 microns
CM Cementitious Materials 100-150 microns

Fine Aggregates ~0.5-2mm Coarse Aggregates ~20mm

Mix 1 - 2 used for shaft backfilling where needed

Mix 3 - 7 used for tunnel lining

Mix 8 - 9 used as contingency

Thermal shrinkage control for 60m length, +500m³ placement Controlled by:

- Low cementitious material content to reduce thermal shrinkage effects including cracking
- Early age strength targeted to resist shrinkage in plain concrete lining

Trial Pour and Design Mix Review

- Extensive honeycombing in early trials due to high viscosity of concrete and cement/ admixture reaction
- Design mix adjusted to include additional inert material and use of superplasticisers to maintain workability

Tunnel L – Telescopic Formwork System

- Formwork systems hand made in Italy
- Fabricator inspection and pre-assembly
- Repeat pre-assembly in HK before lowering to tunnel for lining construction

Tunnels J and K – Invert and Vault Shutters

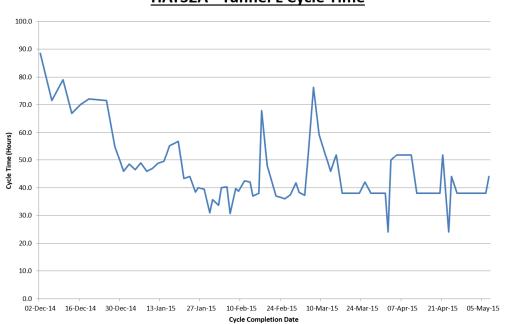
Concrete Distribution System

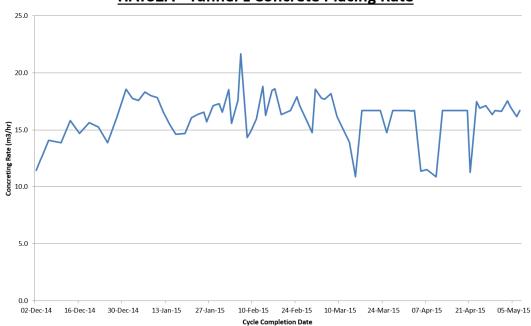
Tunnel L - Telescopic Formwork System

Tunnel L – Telescopic Formwork System

Tunnels J and K – Invert and Vault Shutters

When things go wrong...




Tunnel L - Lining Production

Month	Cycles	Start Chainage	Finish Chainage	Lining Completed (m/ month)
Dec-14	10	8	438	430
Jan-15	16	438	1+350	912
Feb-15	16	1+350	2+319	969
Mar-15	17	2+319	3+288	969
Apr-15	18	3+288	4+222	934
May-15	6	4+222	4+478	256
Total	83			4,470

HATS2A - Tunnel L Cycle Time

HATS2A - Tunnel L Concrete Placing Rate

Conclusions

- Stringent strength and durability requirements achieved through innovative design mix with consideration to long distance placing method and QA/QC processes
- High production and reduced plant for safer delivery
- Concrete design, control on manufacturing and quality processes important to delivery

Conclusions

- 2011 cross harbour swim resumed at Lei Yue Mun, first time since 1978!
- 2017 sees return to centre of Victoria Harbour for first time in nearly 40 years

