Recent developments in HPC in Europe

Prof Tom Harrison

Drivers for development

 Designers are pushing the boundaries

Drivers for development

• Taller buildings

Drivers for development

• Longer lives

Drivers for development

Higher workability

Drivers for development

• Better durability

Drivers for development

Sustainability

High strength concrete

Definition

- Concrete with a compressive strength class higher than C50/60 or LC50/55
- EN 206-1 gives compressive strength classes up to C100/115 and LC80/88

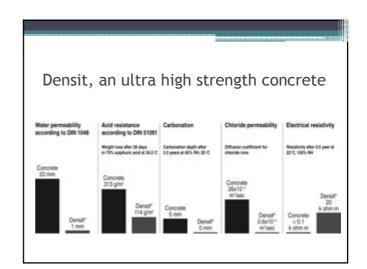
Important change

- BS 8110 did not provide design guidance for high strength concrete structures
- EC2 provides design guidance for high strength concrete

Availability

- In general up to about C70/85 available on demand
- Higher strength concrete may need notice

Availability


 Not all normally stocked constituents are suitable for very high strength concrete

Ultra high strength concrete

- Niche markets
- Proprietary concretes

Self -compacting concrete

 Not a single type of concrete, but a family of concretes

SCC characterized by

- Flowability
- Viscosity
- Segregation resistance
- Passing ability

Flowability

• BS EN 12350-8: Slump flow test

• BS EN 206-9 classes

SF1: 550 - 650 SF2: 660 - 750 SF3: 760 - 850

Viscosity

• BS EN 12350-9 V-funnel test

• BS EN 206-9 classes

VF1: <9

VF2: 9 to 25

Viscosity

- BS EN 12350-8 • BS EN 206-9 T500 test classes
- Time to flow to a VS1: <2 diameter of $VS2: \ge 2$ 500mm

Segregation resistance

- BS EN 12350-11 Sieve
 - segregation test

- BS EN 206-9 classes • SR1:<20
- SR2: ≤15

Passing ability

• BS EN 12350-12 J-ring test

• BS EN 206-9 PJ1: ≤10 with 12

bars

PJ2: <10 with 16

bars

Passing ability

• BS EN 12350-10 L-box test

- BS EN 206-9 classes
- PL1: ≥0.80 with 2 bars

PL2: ≥0.80 with 3

bars

Further guidance

BIBM/CEMBUREAU/ERMCO/EFC A/EFNARC: The European Guidelines for Self-Compacting Concrete -Specification, Production and Use. May 2005

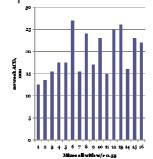
Durability

- For longer working life
- For more aggressive conditions
- For higher reliability

Durability

- A focus in Europe is on the development of tools for HPC
- Service life design
- Equivalent durability procedure

Service life design


- Fib model code published
- ISO drafting a framework standard
- Still many issues related to the use of such tools for the design of new structures

Ageing effects

 Combination of effects of increased concrete maturity and creation of surface layer

Reducing to a traditional specification

 Traditional specifications do not give a consistent performance

HPC with respect to durability

- Either specified by performance
- or, initial testing to develop relationship between performance and mix proportions and then an agreed specification using a combination of performance and prescription

Performance tests

Are being standardized in Europe

Freeze-thaw tests

- BS TS 12390-9: Scaling tests
- Three methods
- 'Torture' tests
- Often fail concretes that work well in practice
- Less severe test under development

Chloride diffusion test

- BS TS 12390-11: Unidirectional diffusion test
- Debate over the need for European standardization of rapid chloride tests

Carbonation tests

BS TS 12390-10: Relative carbonation test
BS TS 12390-XX: Accelerated

carbonation test

Durability

 Limits to what rebar cover and concrete quality can achieve

Additional measures include

- Change in design
- Design for replacement
- Non-corroding reinforcement
- Protective coatings/barriers

Protective coatings/barriers

- A GRP permanent form will protect the concrete from the environment
- In such situations, what is the correct exposure class for the concrete?
- In theory, Xo or XC1, but damage to the GRP could lead to disproportionate consequences
- Select an exposure class (concrete/cover) such that damage between inspections does not lead to disproportionate consequences

Protective coatings/barriers

- Significant improvements in the materials available for coatings/barriers
- Trend in Europe is to use higher performing materials
- Is silane effective on very high quality concrete?
- The effectiveness of coatings and barriers is highly dependent upon workmanship on site
- Robustness in use (temperature, moisture, cleanliness, impact of curing compound)

High performance concrete requires appropriate

- Design
- Specification
- Materials
- Execution
- Maintenance
- It is being achieved

Non-corroding reinforcement

- Zinc-coated rebar rarely (never?) used in Europe
- Due to workmanship issues, trend is away from epoxy-coated rebar
- Current trend is to use stainless steel rebar