Alternative Binders for Concrete Other Than Cement

Jaime SK Yeung
Hong Kong Concrete Institute
What is Concrete?

- Cement + Aggregates + Water
- Binders + Aggregates + Water
- Inorganic Binders (eg. Cement, Lime, Gypsum)
- Organic Binders (epoxy resin, acrylic emulsion)
- Supplementary Binders (PFA, GGBS)
What did the builders use before cement was invented?
Can Concrete have no cement?
Important Milestone in the History of Concrete Binders

- ~ 3000 BC
 - The Egyptians began to use mud mixed with straw to bind dried bricks. They also used gypsum mortars and mortars of lime in the building of the pyramids.
 - The Chinese used cementitious materials in the construction of the Great Wall.
Important Milestone in the History of Concrete Binders

- ~800 BC
 The Greeks used lime mortars that were much harder than later Roman mortars.

- ~300 BC
 The Babylonians and Assyrians used bitumen to bind stones and bricks together.
Important Milestone in the History of Concrete Binders

- ~ 299 BC to 476 AD
- The Romans used pozzolana cement from Pozzuoli, Italy near Mt. Vesuvius to build many famous Roman structures. They used broken bricks and stone aggregates embedded in a mixture of lime putty with brick dust or volcanic ash by the Romans.

Hong Kong Concrete Institute www.hongkongci.org
Important Milestone in the History of Concrete Binders

- 1774

- John Smeaton discovered that combining quicklime with other materials created an extremely hard material that could be used to bind together other materials.
Important Milestone in the History of Concrete Binders

- 1793
- John Smeaton found that the calcination of limestone containing clay produced a lime that hardened under water (hydraulic lime).
Important Milestone in the History of Concrete Binders

- 1796
- An Englishman, James Parker, patented a natural hydraulic cement by calcining nodules of impure limestone containing clay, called Parker's Cement or Roman Cement.
Cement: A Heavy CO$_2$ Emitter

- Common estimation on the CO$_2$ emission from cement production: 0.6 – 1 T of CO$_2$ per 1 T of cement production.
- In China, the statistics in 2005 for the CO$_2$ emission from cement production:
 - 0.815 T of CO$_2$ per 1 T of cement production
 - 0.39 T of CO$_2$ is from the burning of fossil fuel (coal) and
 - 0.415 T is from the decomposition of raw material

 (CaCO$_3$ $\xrightarrow{\text{Heat}}$ CaO + CO$_2$)
 (MgCO$_3$ $\xrightarrow{\text{Heat}}$ MgO + CO$_2$)

(Heating Temperature for clinker: \sim 1450 °C)
Alternative Binders for Concrete other than Cement

Lime Concrete:

- Using Lime: Ca(OH)$_2$ as binder
- Also produced from CaCO$_3$
 \[\text{CaCO}_3 \xrightarrow{\text{Heat}} \text{CaO} + \text{CO}_2 \]
 \[\text{CaO} + \text{H}_2\text{O} \xrightarrow{} \text{Ca(OH)}_2 \]
 (Heating Temperature: ~1000 - 1100 °C)
- Estimated CO$_2$ emission per T of lime production: ~80% of cement.
- After hydration, Ca(OH)$_2$ in lime concrete takes back CO$_2$ from the air and turns back to hardened CaCO$_3$
 \[\text{Ca(OH)}_2 + \text{CO}_2 \xrightarrow{} \text{CaCO}_3 + \text{H}_2\text{O} \]
Lime Vs Cement in CO2 emission

- CO₂ emission from burning of fuel:
 Lime = ~80% of that of Cement
- CO₂ emission from power consumption for production process (e.g. grinding):
 Similar for Lime & Cement
- CO₂ is also produced during chemical process of CaCO₃ to CaO but same amount of CO₂ will be taken up again during hydration and carbonation process (very long process)
Alternative Binders for Concrete other than Cement

- Gypsum Concrete:
- Concrete using Gypsum as the main binder
- Naturally mined gypsum is in the form of \((\text{CaSO}_4 \cdot 2\text{H}_2\text{O})\) (calcium sulfate dihydrate)
- Raw gypsum ores are processed to form a variety of products suiting for different purposes (portland cement additives, soil conditioners, rheology modifying additives, etc.)
- When used as a binder in concrete, the most common form is \((\text{CaSO}_4 \cdot \frac{1}{2}\text{H}_2\text{O})\) (Calcium sulfate hemihydrate)
Gypsum Vs Cement in CO₂ emission

Production process of Calcium Sulfate Hemihydrate (Gypsum binder):

- Calcium Sulfate Dihydrate
 - crushed
 - dried
 - ground
 - Calcined at 120 - 150°C
 - Calcium Sulfate Hemihydrate

Hong Kong Concrete Institute www.hongkongci.org
Gypsum Vs Cement in CO₂ emission

- CO₂ emission from energy consumption for calcination: 120 – 150°C Vs 1450°C (10% of cement)
- CO₂ emission from electricity consumption for grinding process (similar)
- CO₂ emission due to chemical reaction: none for gypsum
Strength Performance of Concrete Using Lime as Binder

<table>
<thead>
<tr>
<th>OPC (kg/m³)</th>
<th>Lime (kg/m³)</th>
<th>PFA (kg/m³)</th>
<th>Total binder (kg/m³)</th>
<th>Slump (mm)</th>
<th>W/B Ratio</th>
<th>7-day (MPa)</th>
<th>28-day (MPa)</th>
<th>56-day (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>300</td>
<td>95</td>
<td>0.60</td>
<td>25.5</td>
<td>32.5</td>
<td>34.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>95</td>
<td>0.50</td>
<td>17.0</td>
<td>25.0</td>
<td>27.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>164</td>
<td>110</td>
<td>0.46</td>
<td>18.0</td>
<td>26.0</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>178</td>
<td>120</td>
<td>0.42</td>
<td>21.0</td>
<td>28.0</td>
<td>31.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>119</td>
<td>120</td>
<td>0.42</td>
<td>14.0</td>
<td>20.5</td>
<td>27.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>267</td>
<td>120</td>
<td>0.42</td>
<td>2.5</td>
<td>4.5</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>89</td>
<td>90</td>
<td>0.42</td>
<td>2.5</td>
<td>4.0</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hong Kong Concrete Institute www.hongkongci.org
Strength Performance of Concrete Using Gypsum as Binder

<table>
<thead>
<tr>
<th>OPC (kg/m³)</th>
<th>Gypsum (kg/m³)</th>
<th>PFA (kg/m³)</th>
<th>Total binder (kg/m³)</th>
<th>Slump (mm)</th>
<th>W/B Ratio</th>
<th>7-day (MPa)</th>
<th>28-day (MPa)</th>
<th>56-day (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>300</td>
<td>95</td>
<td>0.60</td>
<td>25.5</td>
<td>32.5</td>
<td>34.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>300</td>
<td>95</td>
<td>0.63</td>
<td>11.5</td>
<td>15.5</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>300</td>
<td>100</td>
<td>0.57</td>
<td>15.0</td>
<td>21.0</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>300</td>
<td>110</td>
<td>0.57</td>
<td>8.5</td>
<td>15.0</td>
<td>21.5</td>
</tr>
<tr>
<td>164</td>
<td>164</td>
<td>328</td>
<td>100</td>
<td>0.52</td>
<td>14.0</td>
<td>19.5</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>109</td>
<td>327</td>
<td>110</td>
<td>0.52</td>
<td>7.0</td>
<td>13.5</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>178</td>
<td>356</td>
<td>100</td>
<td>0.48</td>
<td>17.0</td>
<td>22.5</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>119</td>
<td>357</td>
<td>100</td>
<td>0.48</td>
<td>10.5</td>
<td>16.0</td>
<td>23.0</td>
<td></td>
</tr>
</tbody>
</table>
Strength Performance of Concrete Using Both Lime & Gypsum as Binder

<table>
<thead>
<tr>
<th>OPC (kg/m³)</th>
<th>Lime (kg/m³)</th>
<th>Gyp-Sum (kg/m³)</th>
<th>PFA (kg/m³)</th>
<th>Total Binder (kg/m³)</th>
<th>Slump (mm)</th>
<th>W/ B Ratio</th>
<th>7-day (MPa)</th>
<th>28-Day (MPa)</th>
<th>56-Day (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>83</td>
<td>84</td>
<td>89</td>
<td>356</td>
<td>100</td>
<td>0.51</td>
<td>8.0</td>
<td>14.5</td>
<td>21.5</td>
</tr>
<tr>
<td>100</td>
<td>73</td>
<td>73</td>
<td>82</td>
<td>328</td>
<td>110</td>
<td>0.55</td>
<td>7.5</td>
<td>13.0</td>
<td>19.0</td>
</tr>
<tr>
<td>100</td>
<td>62</td>
<td>63</td>
<td>75</td>
<td>300</td>
<td>90</td>
<td>0.63</td>
<td>6.0</td>
<td>12.5</td>
<td>17.0</td>
</tr>
</tbody>
</table>

Hong Kong Concrete Institute www.hongkongci.org
Findings from Test Results Using Lime as Binder in Concrete

- Less water requirement to attain the same workability than that of plain OPC mix
- Lime also provides the required alkaline environment (Ca(OH)$_2$) to activate the pozzolanic properties of PFA in strength development
- When works with OPC in the same mix, the stiffening time (visual check) is only slightly prolonged (similar to PFA)
Findings from Test Results Using Lime as Binder in Concrete

- Works well with ordinary water reducing retarding admixtures for OPC mixes
- Hydration process takes much longer time than OPC mixes (\(\text{Ca(OH)}_2 \) takes up \(\text{CO}_2 \) to form \(\text{CaCO}_3 \))
- Attain reasonable compressive strength at 28-day and 56-day (still gains strength after 56-day)
- Works with PFA even with a small quantity of lime (much longer stiffening time)
Findings from Test Results Using Gypsum as Binder in Concrete

- Ordinary water reducing agent for OPC mixes still works with Gypsum but special retarder is required to maintain adequate workable time.
- More water is required than lime concrete for achieving similar workability.
- When targeting at similar workability, the W/B ratio is higher for Gypsum Concrete than Lime concrete.
- No early strength was tested but it could be noticed that the demoulding time for Gypsum Concrete was shorter than Lime Concrete.

Hong Kong Concrete Institute www.hongkongci.org
Findings from Test Results Using Gypsum as Binder in Concrete

- Gypsum is close to neutral itself and therefore does not provide an alkaline environment for the pozzolanic reaction of PFA. Therefore, it does not work well with PFA alone.

- A triple blend binder design (OPC-Gypsum-PFA) has a lower 7-day strength than a OPC-Gypsum mix design but the 28-day strengths of both designs are similar.

- In theory, gypsum is much more stable than OPC in volume change and is therefore expected to have a lower drying shrinkage value (not tested this time) for a similar W/B ratio.
Reduction of Green House Gas by Using less Cement

- Cement is a very non-environmental friendly material
- To reduce the production of green house gas (CO₂), people should attempt to use less cement in concrete
- Do not use excessive cement in concrete mix design (A lower W/B ratio is more effective than a high cementitious content for durability)
- Use alternative binders (lime, gypsum)
- Use supplementary binders (PFA, GGBS)
Application of Lime & Gypsum to Replace Cement in Part or in Whole

- Non structural elements when used as the sole binder in concrete
- Co-binders in concrete for light duty structural elements
- Co-binders in concrete to modify the properties of the resulted concrete (rheology modifier: e.g. reduce drying shrinkage, stiffening time, etc.)
- Grouting material for the gap surrounding tunnel lining
- Grouting material for abandoned underground pipelines or similar applications
Application of Lime & Gypsum to Replace Cement in Part or in Whole

- Floor screed
- Repair concrete/ mortar (normal set, fast set, instant set)
- Plasters & Renders (for outdoor use, better to have cement)
- Skim coats, tile adhesives
- Texture Cement Paint
- Many others applications

Hong Kong Concrete Institute www.hongkongci.org
A Recent Project in HK using Lime/PFA Mortar to fill up gaps between Segment Lining & Excavated Circumference by TBM
Recommendation for further studies

- Properties (drying shrinkage, water absorption, durability, etc.) other than compressive strength for concrete using alternative binders
- Application of alternative binders in concrete for minor usages.
- Exploring and allowing more use of alternative binders in concrete
Don’t say cement only when talk about concrete!

Hong Kong Concrete Institute www.hongkongci.org
Thank you very much!

- Hong Kong Concrete Institute
- www.hongkongci.org