Development of Lightweight Self-compacting Concrete (LWSCC)

By: C. S. Poon
The Hong Kong Polytechnic University

Production Requirements of SCC

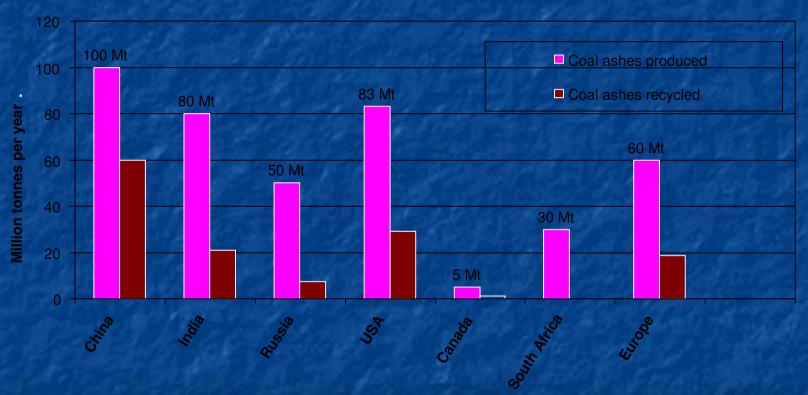
- Higher powder content (cement + filler) and/or viscosity- modifying admixture
- Better quality control on grading of aggregates
- More accurate control of total moisture
- Higher cost for powder and new type of superplasticiser

Impact on Conventional Precasting Operation

- New types moulds lighter and without form vibrators
- Smaller footprints using vertical casting for elements
- Greater flexibility in finishes both faces of element
- Higher flexibility in design complex bar arrangement

Lightweight Concrete

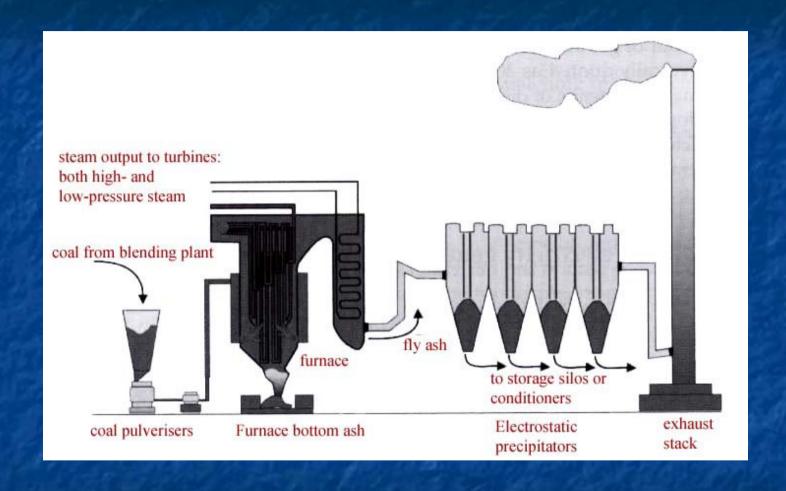
- Lower dead weight
- Easier transportation
- Larger precast elements for same tower crane capacity
- Better insulation


Concern of the use of Lightweight Concrete

- Mechanical properties
- Durability (permeability, carbonation)
- Cost

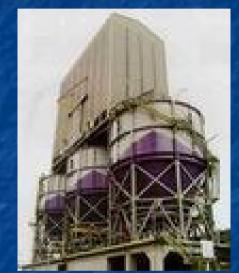
Worldwide coal ash production:

~ 500 Mt of ash produced per annum and this is expected to increase


Hong Kong - Coal Fired Power Plant

Department of Civil and Structural Engineering The Hong Kong Polytechnic University

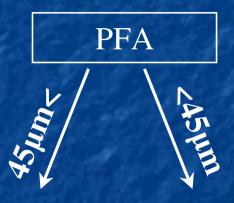
Pulverized Fuel Ash (PFA)


Castle Peak pulverised fuel ash

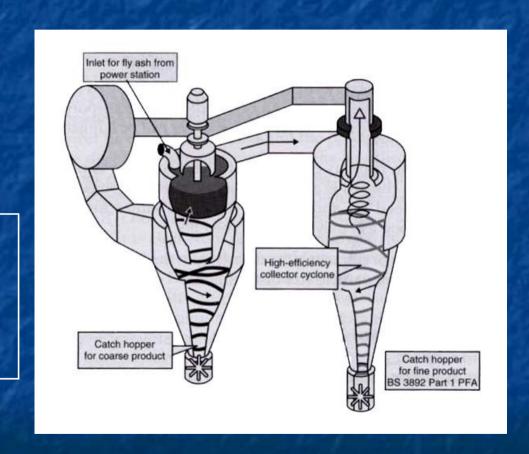
PFA collected in precipitators → Ash Classification Plant (ACP).

Classified PFA (CPFA) has a fineness value where no more than 12.5% is retained on the 45 micron sieve

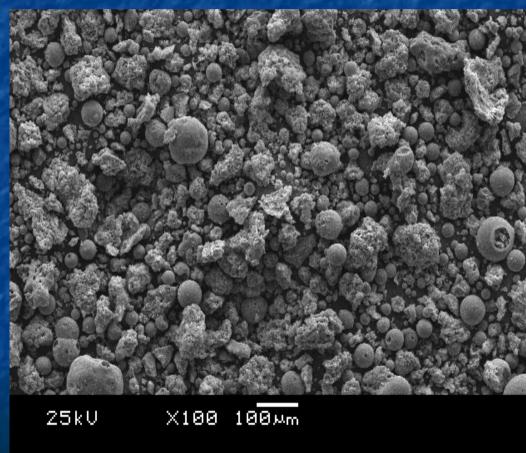
Conforms to British Standard 3892 Part 1-1982 for the production of structural concrete


Used as a cement substitute in concrete and building blocks

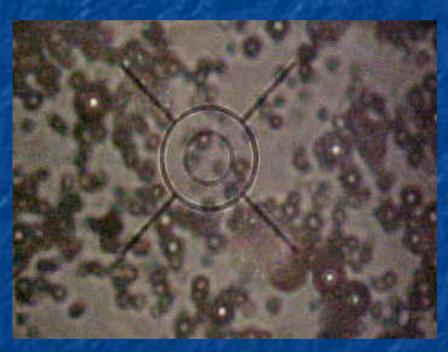
Reject Ash - oversized material from ACP is not used for structural concrete


Pumped through pipelines to a lagoon, 5.5 kilometres north of the station

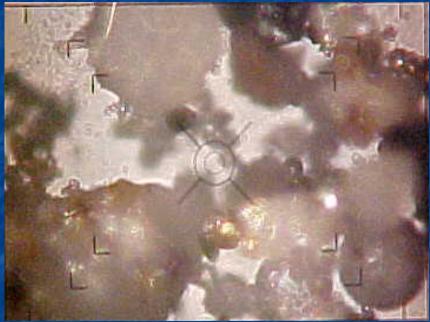
Classification of PFA


Rejected and kept no use

Used for building and S/S materials


Pulverized Fuel Ash (PFA)

- By-product from burn-out of pulverized coal in power stations
- Fine alumino-silicate powder
- Glassy spheres, together with crystalline matter and unburned carbon



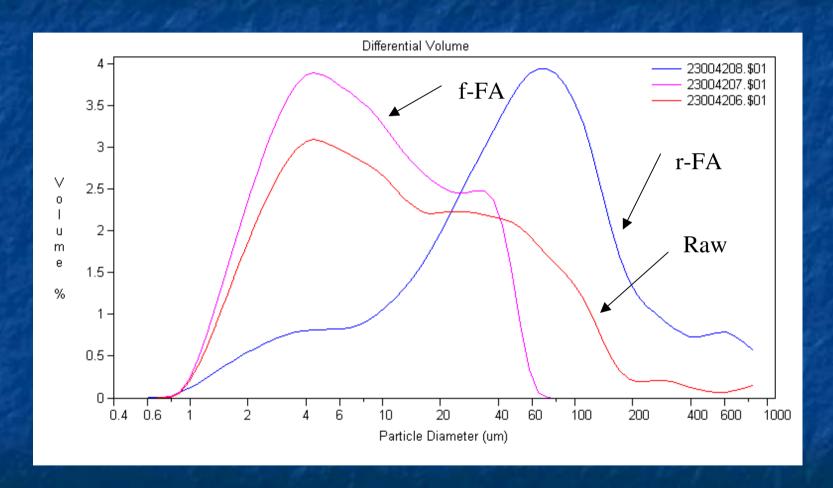
Particles of Fly Ashes

Spherical shapes of f-FA particles

Irregular shapes of r-FA particles

Department of Civil and Structural Engineering The Hong Kong Polytechnic University

Furnace Bottom Ash (FBA)


Objectives of Research


- To use r-FA as a replacement of viscosity agent in normal and lightweight SCC mixtures
- To investigate the influences of r-FA on the fresh and hardened properties of NORMAL WEIGHT SCC mixtures
- To investigate the influences of r-FA and FBA on the fresh and hardened properties of LIGHTWEIGHT SCC mixtures

Chemical Composition of Fly Ashes

Type	${f SiO}_2$	Fe ₂ O ₃	Al ₂ O ₃	TiO ₂	CaO	LOI	Fineness (m²/kg)	Density (kg/m³)
r-FA	47.2	8.4	24.5	1.0	8.3	8.1	119.0	2.19
f-FA	47.6	7.4	27.4	1.2	8.1	0.9	399.6	2.28

Size Distribution of r-FA

Benefits of Using r-FA

- Pozzolanic properties of fly ashes
- Replacement of limestone fillers and mineral powders
- Replacement of viscosity agent
- By-product in electricity generation
- Additional benefits of economy

Requirements of SCC Mixtures

- Initial slump flow = 650 mm
- Slump flow value of 650 mm to be maintained over a period of 2 hours
- A minimum blocking ratio of 0.75 measured using the L-box apparatus
- Segregation ratio between 5 % and 15 %

Normal Weight SCC

Mix Proportions for Normal Weight SCC Mixtures

Mix	OPC (kg/m³)	f-FA (kg/m ³)	r-FA (kg/m ³)	Aggregate (kg/m³)	Sand (kg/m³)	Water (kg/m³)	w/b	w/p	SP (%)
1*	375	125	0	400	860	200	0.4	0.4	1.7
2	375	125	100	400	740	200	0.4	0.34	1.6
3	375	125	150	400	680	200	0.4	0.32	1.8
4	375	125	200	400	620	200	0.4	0.30	1.7
5	375	125	250	400	560	200	0.4	0.28	2.1

^{*} Viscosity agent of 1.1 % by weight of binder (OPC+f-FA) was added

Fresh Properties

- Slump flow
- •L-box
- Wet density
- Segregation

SCC with Lightweight Aggregates

Hardened properties

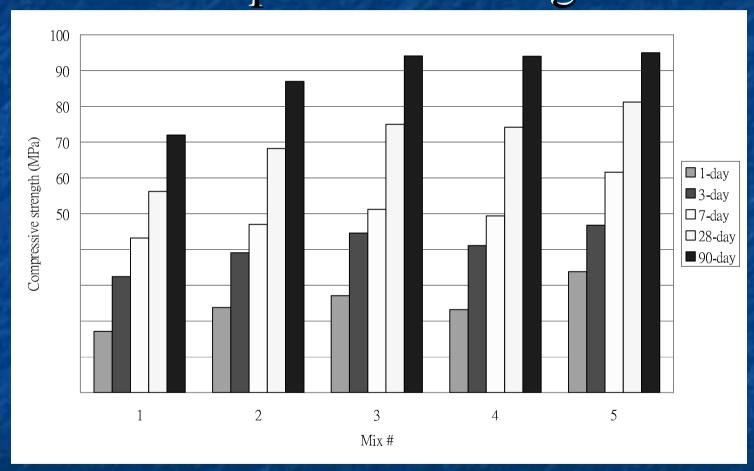
- Compressive strength (1, 4, 7, 28 and 90 days)
- Tensile strength (28 days)
- ●E-value (28 days)
- Wet and oven dry densities

Durability

- Chloride permeability
- Drying shrinkage

Fresh properties of Normal Weight SCC with r-FA

	Slump flow (mm)				L-box			7		
Mix	Immediately after mixing		2 hours after mixing		Final time (s)	Blocking ratio	Wet density (kg/m³)	Air content (%)	Segregation degree (%)	
	Time (s)	Flow (mm)	Time (s)	Flow (mm)			(Kg/III)		(70)	
1	36	690	40	688	23	0.82	2180	5.9	8.1	
2	41	760	40	705	31	0.72	2280	2.5	7.4	
3	44	755	41	710	36	0.72	2260	3.5	5.3	
4	49	835	28	765	22	0.88	2200	3.0	9.9	
5	35	718	40	685	40	0.60	2220	3.6	9.2	

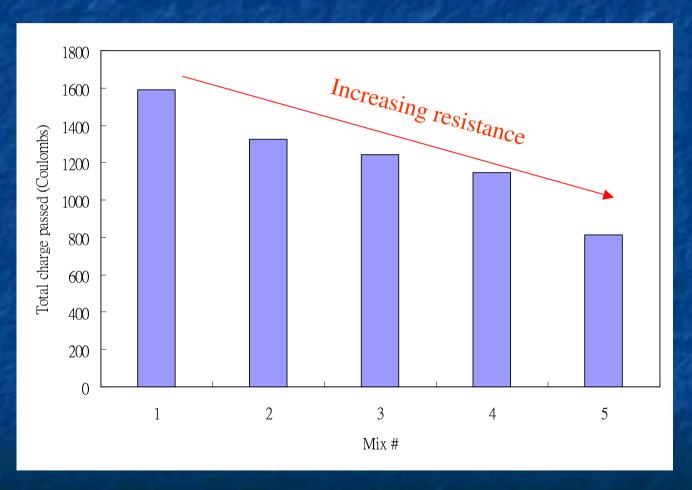

Fresh Properties of Normal Weight SCC with r-FA

- Slump flow values of the SCC mixtures were acceptable (>650 mm).
- The addition of r-FA could cause a reduction in the blocking ratio.
- Segregation ratio was satisfactory
- r-FA could be used as a replacement of viscosity agent

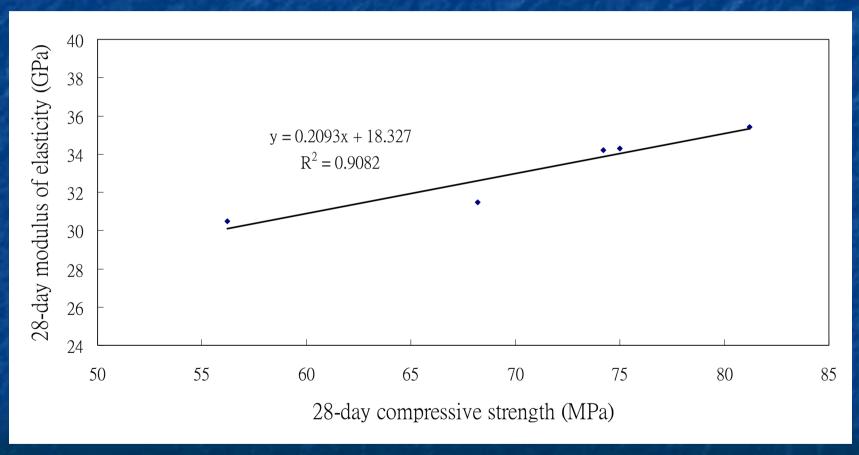
Tests for Hardened Properties

- Compressive strength
- Elastic modulus
- Chloride ion penetration (ASTM C1202)

Compressive Strength


Compressive Strength

- Control mixture had the lowest strength at all ages.
- Mix #5, which contained the highest amount of r-FA, had the highest strength at all ages.
- The strength increased as the r-FA content increased.
- The increased strength was due to the pozzolanic effect of r-FA and the improved packing within the concrete matrix.


Elastic Modulus

Chloride Ion Penetration

Relationship between Strength and Elastic Modulus

Hardened Properties

- Elastic modulus increased with an increase in the r-FA content.
- A 15 % increase in elastic modulus was observed when r-FA content increased from 0 to 250 kg/m³.
- Resistance to chloride ion penetration improved as the r-FA content increased.
- A good correlation existed between strength and elastic modulus.

Lightweight SCC

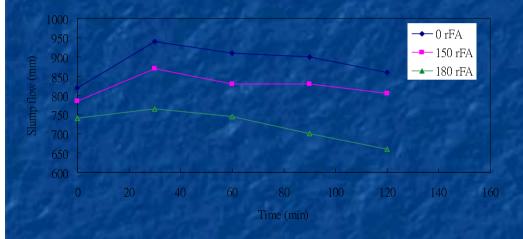
Lightweight Aggregates

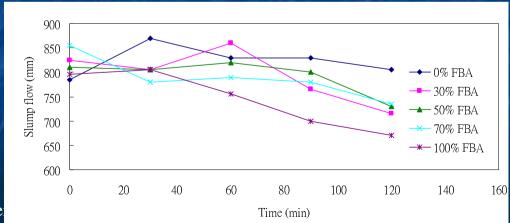
Aggregate Properties

	Lightweight Aggregate (Leca)	Sand	FBA
Water absorption (%)	25.0	0.9	17.0
SSD density (kg/m³)	1355	2620	2190
Drying shrinkage (%)	<0.05%	-	-
TFV (kN)	106	-	-
Fineness modulus (FM)	5.70	2.28	2.22

Mix Proportions

	OPC (kg)	PFA (kg)	r-FA (kg)	LWA (kg)	Sand (kg)	Water (kg)	w/b	SP (L/m³)	VMA (L/m³)
r-FA-0	400	100	0	615	450	168	0.34	6.0	2.9
r-FA-150	400	100	150	580	450	168	0.34	6.0	-
r-FA-180	400	100	180	560	450	168	0.34	6.0	-
	OPC (kg)	PFA (kg)	r-FA (kg)	LWA (kg)	Sand (kg)	FBA (kg)	Water (kg)	w/b	SP (L/m³)
FBA-30	400	100	150	580	300	110	168	0.34	6.0
FBA-50	400	100	150	580	215	180	168	0.34	6.0
FBA-70	400	100	150	580	108	270	168	0.34	6.0
FBA-100	400	100	150	580	-	365	168	0.34	6.0

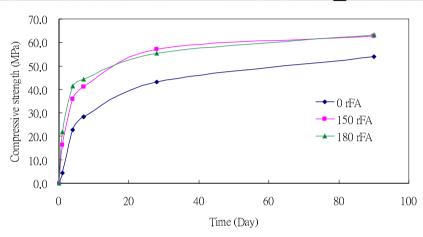

Fresh Properties

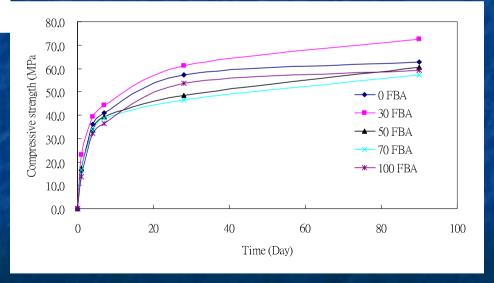

	L-box ratio (%)	Segregation ratio (%)	Wet density (kg/m ³⁾	Slump flow (After2 hours) (mm)		
Series I						
r-FA-0	90.6	10.3	1740	860		
r-FA-150	90.4	7.1	1860	805		
r-FA-180	86.7	10.2	1880	660		
Series II						
FBA-30	83.3	8.5	1810	715		
FBA-50	93.8	8.3	1740	730		
FBA-70	87.5	9.2	1730	735		
FBA-100	93.8	11.0	1720	670		

Shrinkage, Permeability and Density

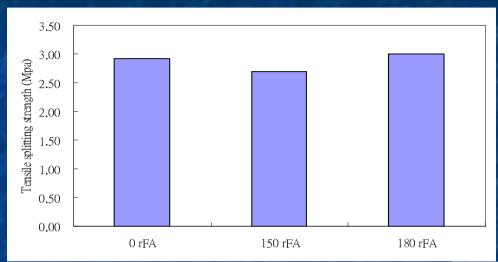
	Shrinkage (112 days) (x10 ⁻⁶)	Chloride permeability (C)	Oven-dry density (kg/m³)	Saturated density (kg/m³)		
Series I						
r-FA-0	462	1308	1715	1921		
r-FA-150	680	1396	1692	1890		
r-FA-180	409	1439	1865	1937		
Series II						
FBA-30	619	1129	1694	1909		
FBA-50	510	1569	1644	1845		
FBA-70	472	1143	1614	1805		
FBA-100	723	1818	1557	1820		

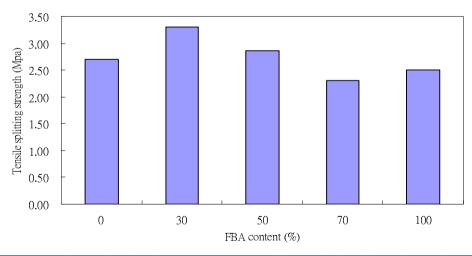
Slump flow

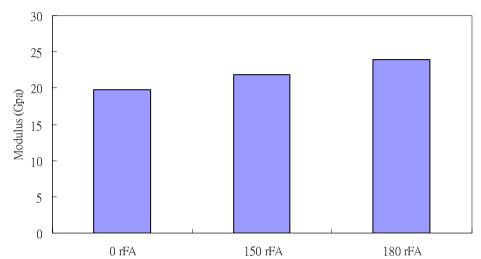


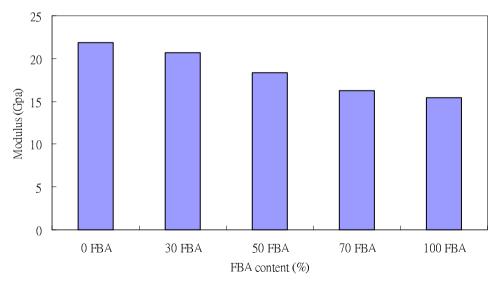

Department of Civil and Structural Enginee The Hong Kong Polytechnic University

Compressive strength


150 and 180 rFA mixes show similar compressive strength but higher than that without rFA


Highest compressive strength→30% FBA replacement


Department of Civil and Structural Engineering The Hong Kong Polytechnic University


Tensile splitting Strength

Department of Civil and Structural Engineering The Hong Kong Polytechnic University

E-value vs Compressive strength

Compressive Strength

- The use of r-FA increased the compressive strength.
- Low 1-day strength (4.5 MPa) without the use of r-FA.
- The 1-day strengths were 16 and 21 MPa for mixtures with 150 and 180 kg/m³ of r-FA respectively.

Conclusions: I

Normal weight SCC

- r-FA could be used as a replacement of viscosity agent.
- The fresh properties of SCC with r-FA were satisfactory.
- The compressive strength of SCC increased with an increase in r-FA content.

Conclusions: II

- Elastic modulus also increased with an increase with an increase in r-FA content.
- Resistance to chloride ion penetration was improved as the r-FA content increased.
- A good correlation between strength and elastic modulus.

Conclusions: III

Lightweight SCC

- R-FA and FBA can be used to produce lightweight SCC
- The fresh properties of lightweight SCC was satisfactory.
- It was found that slump flow reached the maximum 30 minutes after mixing.
- The oven dried density of lightweight SCC was about 1650 kg/m³.

Conclusions: IV

- The addition of r-FA significantly increased the compressive strength of LWSCC.
- The incorporation of r-FA significantly improved the 1-day compressive strength.
- Mix with 30 FBA achieved the highest strength

Thank you for your attention!